security screening
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 73)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Athanasios Skraparlis ◽  
Klimis Ntalianis ◽  
Dimitris Kouremenos ◽  
Nikolaos Mastorakis

Every year, millions of letters/parcels containing illicit goods are detected by customs authorities, which use traditional security screening equipment. However this equipment cannot detect all kinds of illicit goods and the detection procedure heavily depends on the attention of the customs officer. In order to achieve sufficiently fast intelligent screening of the large volumes of letters/parcels and detect all common kinds of threats, this paper proposes a highly innovative architecture well-beyond the state-of–art. In particular the proposed architecture monitors every letter/parcel by incorporating: (a) terahertz/X-ray sensors, (b) chemical, biological, radiological and nuclear (CBNR) sensors, (c) artificial robot-noses for narcotics, explosives etc., (d) magnetometers for weapons, firearms, banknotes etc., (e) acoustic sensors for liquids/gases/solids, (f) weight/pressure sensors to measure weight distribution, size and shape. Sensory information can be: (a) used to create a “Spectral Signatures Dictionary of Illicit Goods and Threats”, (b) fused to segment/isolate illicit goods and (c) visualized in the form of annotated high-resolution tensor-structured (3D/4D) multisensory image data. The proposed solution also gathers available information for the sender/recipient from various resources, while it also analyzes data from the dark web. All information is forwarded to an AI-based knowledge infrastructure.


2021 ◽  
Author(s):  
Swagata Sarkar ◽  
Sivakami Nagappan ◽  
Shafin Kadhir Badhusha

Millimetre Wave frequencies (30–300 GHz) can be used for different major applications of modern world like telecommunications, security screening, imaging, automotive radars, military applications, remote sensing, radio astronomy and many more. The internationally reserved frequency spectrum is used for Radio Frequency Energy. In this work 64 GHz antennas are compared with different design and a comparative study is taken. In this work Microstrip patch antenna with carpet architecture, and fractal island are designed and compared. The general comparative parameters for antenna are directivity, gain, return loss, bandwidth, specific absorption rate etc. After the comparison, it is found that return loss gave better result for carpet design at 64 GHz compare to fractal island design.


Author(s):  
Reme Arhewoh ◽  
Brian A. Kelly ◽  
Michael P. Kelly ◽  
Jacob M. Buchowski ◽  
Munish C. Gupta ◽  
...  

Author(s):  
David Anderson

Abstract Screening for prohibited items at airports is an example of a multi-layered screening process. Multiple layers of screening – often comprising different technologies with complementary strengths and weaknesses – are combined to create a single screening process. The detection performance of the overall system depends on multiple factors, including the performance of individual layers, the complementarity of different layers, and the decision rule(s) for determining how outputs from individual layers are combined. The aim of this work is to understand and optimise the overall system performance of a multi-layered screening process. Novel aspects include the use of realistic profiles of alarm distributions based on experimental observations and a focus on the influence of correlation/orthogonality amongst the layers of screening. The results show that a cumulative screening architecture can outperform a cascading one, yielding a significant increase in system-level true positive rate for only a modest increase in false positive rate. A cumulative screening process is also more resilient to weaknesses in the individual layers. The performance of a multi-layered screening process using a cascading approach is maximised when the false positives are orthogonal across the different layers and the true positives are correlated. The system-level performance of a cumulative screening process, on the other hand, is maximised when both false positives and true positives are as orthogonal as possible. The cost of ignoring orthogonality between screening layers is explored with some numerical examples. The underlying software model is provided in a Jupyter Notebook as supplementary material.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5943
Author(s):  
Artur Kierzkowski ◽  
Tomasz Kisiel

So far, airport security screening has only been analysed in terms of efficiency, level of service, and protection against any acts of unlawful interference. Screening procedures have not yet addressed the need to limit operator-to-passenger contact. However, the pandemic situation (COVID-19) has shown that it is a factor that can be a key protection for the health of passengers and operators. The purpose of this paper was to analyse the feasibility of reducing contact between operators and passengers in the airport security screening system by process management with respect to the power consumption of the system. Experimental research was conducted on a real system. A computer simulation was applied to estimate system performance and power consumption. The paper identifies the important findings that expand upon previous knowledge. The results showed that there are two key factors: the experience of operators and proper system structure. These factors can significantly reduce the number of operator-to-passenger contacts and, in parallel, provide lower energy consumption of the system. The results obtained in this article showed that proper management improves the process by up to 37%. This approach expands the World Health Organization’s policy of prevention against COVID-19 and helps to ensure sustainable process management.


2021 ◽  
Author(s):  
Yayun Cheng ◽  
Lingbo Qiao ◽  
Hang Cheng ◽  
Ziran Zhao

2021 ◽  
Author(s):  
Konstantin Root ◽  
Ingrid Ullmann ◽  
Stefan Gmehling ◽  
Martin Vossiek

Sign in / Sign up

Export Citation Format

Share Document