Experimental and numerical investigations of material removal process in electrochemical discharge machining of glass in discharge regime

Author(s):  
Xiaoming Kang ◽  
Weidong Tang ◽  
Wansheng Zhao ◽  
Jun Qian ◽  
Bert Lauwers
2015 ◽  
Author(s):  
Baoyang Jiang ◽  
Shuhuai Lan ◽  
Jun Ni

Electrochemical discharge machining (ECDM) is a promising machining technology to process non-conducing and brittle materials, featuring high throughput and good accuracy in meso and micro scale machining of hard-to-machine materials. Currently ECDM has not yet attracted wide interest from the industry because of the low controllability and repeatability. There is a huge gap in process optimization to make ECDM viable in industry. A good process model is essential to achieve an improved and optimized process. The fundamental of ECDM is the discharging activity, which triggers various mechanisms to remove material. Therefore characterization of sparks from the aspects of electrical and thermal properties is the premise of process modeling. In this paper, experimental investigation and modeling of discharging activity was presented. The spark releasing process was studied in terms of discharge energy, intensity distribution, and material removal. Conic tool electrodes were fabricated to achieve more consistent discharging. The material removal mechanism was revealed by analytical derivation and simulated with numerical methods.


Author(s):  
B.R. Sarkar ◽  
B. Doloi ◽  
B. Bhattacharyya

Electrochemical discharge machining (ECDM) process has great potential to machine hard, brittle and electrically non-conducting materials in micron range. The objective of this paper is to investigate into electrochemical discharge micro-machining on electrically semi-conductor type silicon carbide (SiC) material so as to study the effects of applied voltage, electrolyte concentration and inter-electrode gap on material removal rate (MRR) and radial overcut (ROC) of micro-drilled hole. Experiments were conducted based on L9 array of Taguchi method with stainless steel µ-tool of 300µm diameter using NaOH electrolyte. An attempt has been made to find out the single as well as multi-objective optimal parametric combinations for maximum MRR and minimum ROC. The single-objective parametric combinations were selected as 45V/20wt%/20mm and 25V/20wt%/40mm for maximum MRR and minimum ROC respectively whereas multi-objective optimal parametric combinations was found as 25V/20wt%/40mm. Further mathematical models have been developed between the above machining parameters and characteristics.


Author(s):  
Baoyang Jiang ◽  
Shuhuai Lan ◽  
Jun Ni

Electrochemical discharge machining (ECDM) is a non-conventional micromachining technology, and is highlighted for non-conductive brittle materials. However, the outcomes of ECDM have many restrictions in application due to limitations on efficiency, accuracy, and machining quality. In this paper, a drilling incorporated ECDM process is presented and analyzed to enhance material removal rate in ECDM drilling process. Incorporating micro-drilling into ECDM significantly increases the rate of material removal, especially in deep hole drilling. As fundamentals of the machining process, material removal mechanisms have been investigated to account for the increment in material removal rate by incorporating micro-drilling. Vibration of tool electrode, induced by a piezo-actuator, was introduced to further enhance material removal rate. Quantitative studies were conducted to determine the appropriate process parameters of drilling incorporated ECDM with tool vibration.


Sign in / Sign up

Export Citation Format

Share Document