scholarly journals Mapping Strategic Goals and Operational Performance Metrics for Smart Manufacturing Systems

2015 ◽  
Vol 44 ◽  
pp. 184-193 ◽  
Author(s):  
Kiwook Jung ◽  
K.C. Morris ◽  
Kevin W. Lyons ◽  
Swee Leong ◽  
Hyunbo Cho
2017 ◽  
Vol 1 (1) ◽  
pp. 20160012 ◽  
Author(s):  
Y. T. Lee ◽  
S. Kumaraguru ◽  
S. Jain ◽  
S. Robinson ◽  
M. Helu ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 208
Author(s):  
Zhuming Bi ◽  
Wen-Jun Zhang ◽  
Chong Wu ◽  
Chaomin Luo ◽  
Lida Xu

In a traditional system paradigm, an enterprise reference model provides the guide for practitioners to select manufacturing elements, configure elements into a manufacturing system, and model system options for evaluation and comparison of system solutions against given performance metrics. However, a smart manufacturing system aims to reconfigure different systems in achieving high-level smartness in its system lifecycle; moreover, each smart system is customized in terms of the constraints of manufacturing resources and the prioritized performance metrics to achieve system smartness. Few works were found on the development of systematic methodologies for the design of smart manufacturing systems. The novel contributions of the presented work are at two aspects: (1) unified definitions of digital functional elements and manufacturing systems have been proposed; they are generalized to have all digitized characteristics and they are customizable to any manufacturing system with specified manufacturing resources and goals of smartness and (2) a systematic design methodology has been proposed; it can serve as the guide for designs of smart manufacturing systems in specified applications. The presented work consists of two separated parts. In the first part of paper, a simplified definition of smart manufacturing (SM) is proposed to unify the diversified expectations and a newly developed concept digital triad (DT-II) is adopted to define a generic reference model to represent essential features of smart manufacturing systems. In the second part of the paper, the axiomatic design theory (ADT) is adopted and expanded as the generic design methodology for design, analysis, and assessment of smart manufacturing systems. Three case studies are reviewed to illustrate the applications of the proposed methodology, and the future research directions towards smart manufacturing are discussed as a summary in the second part.


2021 ◽  
Vol 11 (6) ◽  
pp. 2850
Author(s):  
Dalibor Dobrilovic ◽  
Vladimir Brtka ◽  
Zeljko Stojanov ◽  
Gordana Jotanovic ◽  
Dragan Perakovic ◽  
...  

The growing application of smart manufacturing systems and the expansion of the Industry 4.0 model have created a need for new teaching platforms for education, rapid application development, and testing. This research addresses this need with a proposal for a model of working environment monitoring in smart manufacturing, based on emerging wireless sensor technologies and the message queuing telemetry transport (MQTT) protocol. In accordance with the proposed model, a testing platform was developed. The testing platform was built on open-source hardware and software components. The testing platform was used for the validation of the model within the presented experimental environment. The results showed that the proposed model could be developed by mainly using open-source components, which can then be used to simulate different scenarios, applications, and target systems. Furthermore, the presented stable and functional platform proved to be applicable in the process of rapid prototyping, and software development for the targeted systems, as well as for student teaching as part of the engineering education process.


Sign in / Sign up

Export Citation Format

Share Document