scholarly journals The Kullback-Leibler Divergence Used in Machine Learning Algorithms for Health Care Applications and Hypertension Prediction: A Literature Review

2018 ◽  
Vol 141 ◽  
pp. 448-453 ◽  
Author(s):  
Antonio Clim ◽  
Răzvan Daniel Zota ◽  
Grigore TinicĂ
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2021 ◽  
Vol 1937 (1) ◽  
pp. 012054
Author(s):  
V. Ankitha ◽  
P. Manimegalai ◽  
P. Subha Hency Jose ◽  
P. Raji

Author(s):  
R. Suganya ◽  
Rajaram S. ◽  
Kameswari M.

Currently, thyroid disorders are more common and widespread among women worldwide. In India, seven out of ten women are suffering from thyroid problems. Various research literature studies predict that about 35% of Indian women are examined with prevalent goiter. It is very necessary to take preventive measures at its early stages, otherwise it causes infertility problem among women. The recent review discusses various analytics models that are used to handle different types of thyroid problems in women. This chapter is planned to analyze and compare different classification models, both machine learning algorithms and deep leaning algorithms, to classify different thyroid problems. Literature from both machine learning and deep learning algorithms is considered. This literature review on thyroid problems will help to analyze the reason and characteristics of thyroid disorder. The dataset used to build and to validate the algorithms was provided by UCI machine learning repository.


2020 ◽  
Vol 17 (9) ◽  
pp. 4294-4298
Author(s):  
B. R. Sunil Kumar ◽  
B. S. Siddhartha ◽  
S. N. Shwetha ◽  
K. Arpitha

This paper intends to use distinct machine learning algorithms and exploring its multi-features. The primary advantage of machine learning is, a machine learning algorithm can predict its work automatically by learning what to do with information. This paper reveals the concept of machine learning and its algorithms which can be used for different applications such as health care, sentiment analysis and many more. Sometimes the programmers will get confused which algorithm to apply for their applications. This paper provides an idea related to the algorithm used on the basis of how accurately it fits. Based on the collected data, one of the algorithms can be selected based upon its pros and cons. By considering the data set, the base model is developed, trained and tested. Then the trained model is ready for prediction and can be deployed on the basis of feasibility.


2020 ◽  
Vol 7 (2) ◽  
pp. 129-134
Author(s):  
Takudzwa Fadziso

In modern times, the collection of data is not a big deal but using it in a meaningful is a challenging task. Different organizations are using artificial intelligence and machine learning for collecting and utilizing the data. These should also be used in the medical because different disease requires the prediction. One of these diseases is asthma that is continuously increasing and affecting more and more people. The major issue is that it is difficult to diagnose in children. Machine learning algorithms can help in diagnosing it early so that the doctors can start the treatment early. Machine learning algorithms can perform this prediction so this study will be helpful for both the doctors and patients. There are different machine learning predictive algorithms are available that have been used for this purpose.  


Sign in / Sign up

Export Citation Format

Share Document