scholarly journals Estimation of the influence of spiking neural network parameters on classification accuracy using a genetic algorithm

2018 ◽  
Vol 145 ◽  
pp. 488-494 ◽  
Author(s):  
Aleksandr Sboev ◽  
Alexey Serenko ◽  
Roman Rybka ◽  
Danila Vlasov ◽  
Andrey Filchenkov
2021 ◽  
Vol 2083 (3) ◽  
pp. 032010
Author(s):  
Rong Ma

Abstract The traditional BP neural network is difficult to achieve the target effect in the prediction of waterway cargo turnover. In order to improve the accuracy of waterway cargo turnover forecast, a waterway cargo turnover forecast model was created based on genetic algorithm to optimize neural network parameters. The genetic algorithm overcomes the trap that the general iterative method easily falls into, that is, the “endless loop” phenomenon that occurs when the local minimum is small, and the calculation time is small, and the robustness is high. Using genetic algorithm optimized BP neural network to predict waterway cargo turnover, and the empirical analysis of the waterway cargo turnover forecast is carried out. The results obtained show that the neural network waterway optimized by genetic algorithm has a higher accuracy than the traditional BP neural network for predicting waterway cargo turnover, and the optimization model can long-term analysis of the characteristics of waterway cargo turnover changes shows that the prediction effect is far better than traditional neural networks.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shipu Xu ◽  
Runlong Li ◽  
Yunsheng Wang ◽  
Yong Liu ◽  
Wenwen Hu ◽  
...  

With the increasing of depth and complexity of the convolutional neural network, parameter dimensionality and volume of computing have greatly restricted its applications. Based on the SqueezeNet network structure, this study introduces a block convolution and uses channel shuffle between blocks to alleviate the information jam. The method is aimed at reducing the dimensionality of parameters of in an original network structure and improving the efficiency of network operation. The verification performance of the ORL dataset shows that the classification accuracy and convergence efficiency are not reduced or even slightly improved when the network parameters are reduced, which supports the validity of block convolution in structure lightweight. Moreover, using a classic CIFAR-10 dataset, this network decreases parameter dimensionality while accelerating computational processing, with excellent convergence stability and efficiency when the network accuracy is only reduced by 1.3%.


2020 ◽  
pp. 1458-1479
Author(s):  
Nabil M. Hewahi ◽  
Enas Abu Hamra

Artificial Neural Network (ANN) has played a significant role in many areas because of its ability to solve many complex problems that mathematical methods failed to solve. However, it has some shortcomings that lead it to stop working in some cases or decrease the result accuracy. In this research the authors propose a new approach combining particle swarm optimization algorithm (PSO) and genetic algorithm (GA), to increase the classification accuracy of ANN. The proposed approach utilizes the advantages of both PSO and GA to overcome the local minima problem of ANN, which prevents ANN from improving the classification accuracy. The algorithms start with using backpropagation algorithm, then it keeps repeating applying GA followed by PSO until the optimum classification is reached. The proposed approach is domain independent and has been evaluated by applying it using nine datasets with various domains and characteristics. A comparative study has been performed between the authors' proposed approach and other previous approaches, the results show the superiority of our approach.


Sign in / Sign up

Export Citation Format

Share Document