scholarly journals Active Vibration Control of an FGM Rectangular Plate using Fuzzy Logic Controllers

2011 ◽  
Vol 14 ◽  
pp. 3019-3026 ◽  
Author(s):  
A. Hossain Nezhad Shirazi ◽  
H.R. Owji ◽  
M. Rafeeyan
2014 ◽  
Vol 598 ◽  
pp. 529-533
Author(s):  
Erdi Gülbahçe ◽  
Mehmet Çelik ◽  
Mustafa Tinkir

The main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure’s experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam’s equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.


2018 ◽  
Vol 27 (8) ◽  
pp. 085030 ◽  
Author(s):  
Yajun Luo ◽  
Xue Zhang ◽  
Yahong Zhang ◽  
Yuandong Qu ◽  
Minglong Xu ◽  
...  

Author(s):  
S-J Huang ◽  
R-J Lian

The construction of a dynamic absorber incorporating active vibration control is described. The absorber is a 2 degree of freedom spring-lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass were acted on by direct current (d.c.) servo motors, respectively, to suppress the vibration amplitude. In this paper, a new control approach is proposed by combining fuzzy logic and neural network algorithms to control the multi-input/multi-output (MIMO) system. Firstly, the fuzzy logic controller was designed for controlling the main influence part of the MIMO system. Secondly, the coupling neural network controller was employed to take care of the coupling effect and refine the control performance of the MIMO system. The experimental results show that the control system effectively suppresses the vibration amplitude and with good position tracking accuracy.


Author(s):  
Moon K. Kwak ◽  
Dong-Ho Yang

This paper is concerned with the active vibration control of a hanged rectangular plate partially submerged into a fluid by using piezoelectric sensors and actuators bonded to the plate. A dynamic model for the plate is derived by using the Rayleigh-Ritz method and the fluid effect is modeled by the virtual mass increase that is obtained by solving the Laplace equation. The natural vibration characteristics of the plate in air obtained theoretically are in good agreement with the experimental results. The changes in natural frequencies due to the presence of fluid were measured and compared to the theoretical predictions. Experimental results show that the theoretical predictions are in good agreement with the experimental results. The natural vibration characteristics of the plate both in air and in water are used for the active vibration control design. In this study, the multi-input and multi-output positive position feedback controller was designed based on the natural vibration characteristics and implemented by using a digital controller. Experimental results show that the vibration of the hanged rectangular plate both in air and partially submerged into a fluid can be successfully suppressed by using piezoelectric sensors and actuators.


Sign in / Sign up

Export Citation Format

Share Document