scholarly journals Mixed Mode Delamination Analysis by a Thermodynamically Consistent Cohesive Interface Model with Independent Mode I and Mode II Fracture Energies

2015 ◽  
Vol 109 ◽  
pp. 327-337 ◽  
Author(s):  
F. Parrinello ◽  
G. Marannano ◽  
G. Borino
2018 ◽  
Vol 189 ◽  
pp. 51-63 ◽  
Author(s):  
Gan Feng ◽  
Yong Kang ◽  
Feng Chen ◽  
Yi-wei Liu ◽  
Xiao-chuan Wang

Author(s):  
Frank Abdi ◽  
Harsh Baid ◽  
Jalees Ahmad ◽  
Steve Gonczy ◽  
Gregory N. Morscher ◽  
...  

The objective of this effort is to develop and demonstrate innovative interlaminar Mode I and Mode II fracture toughness analysis and test methods for ceramic matrix composites (CMC). Currently, there are number of American Society for Testing and Materials (ASTM) test standards for CMC’s at both ambient and elevated temperatures, including interlaminar tension and shear strength test methods. However, there are no standardized test methods for determination of interlaminar fracture toughness in CMC’s. Although research work exists on interlaminar Mode I and Mode II fracture toughness of various types of CMC’s, the test methods applied particularly in Mode II fracture toughness testing showed definite drawbacks and limitations. ASTM test standards for CMC’s may exhibit a zig-zag (wavy) crack path pattern, and fiber bridging. The experimental parameters that may contribute to the difficulty can be summarized as: specimen width and thickness, interface coating thickness, mixed mode failure evolution, and interlaminar defects. Modes I and II crack growth resistances, GI and GII, were analytically determined at ambient temperature using double cantilever beam (DCB) and End Notched Flexure (ENF) geometries. Three (3) CMC material systems were analyzed (Sylramic/IBN/MI, SiC/SiC CVI, and SiC/CAS). Several Finite Element (FE) based potential techniques were investigated: a) Multi-scale progressive failure analysis (MS-PFA); b) Virtual Crack Closure Technique (VCCT); and c) Contour Integral (CI). Advantages and disadvantages of each were identified. The final modeling algorithm recommended was an integrated damage and fracture evolution methodology using MS-PFA and VCCT. The analysis results (Fracture energy vs. crack length, Fracture energy vs. load, Fracture energy vs. crack opening displacement) matched the Mode I and Mode II coupon tests and revealed the following key findings. Mode I-DCB specimen: 1) Sylramic/IBN/MI failure mode is due to interlaminar tension (ILT) only in the interface section and a zig-zag pattern observed 2) VCCT crack growth resistance of Sylramic/IBN/MI is well matched to the test data and 3) SiC/SiC CVI failure mode is a mixed mode behavior (ILT to interlaminar shear (ILS). Mode II ENF specimen MS-PFA analysis suggests mixed mode behavior and the zig-zag pattern similar to Mode I coupon tests.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


Sign in / Sign up

Export Citation Format

Share Document