scholarly journals Life Cycle Assessment of multilayer polymer film used on food packaging field

2011 ◽  
Vol 1 ◽  
pp. 235-239 ◽  
Author(s):  
Valentina Siracusa ◽  
Marco Dalla Rosa ◽  
Santina Romani ◽  
Pietro Rocculi ◽  
Urszula Tylewicz
Author(s):  
NiLuh Widyaningsih

Household consumption is the value of products bought by the household. Consumption takes the biggest part in our lives to support our basic needs on food, clothe, and shelter. The products packaging do not come from natural anymore but from the man-made, such as paper, plastic, glass or metal. Most of the packaging become waste into the environment. There are organic and inorganic waste. The increasing number of population will increase the demand on the products and it will create more waste. Indonesia is the 4th most populated country in the world and it has still waste management problems in urban and rural area. In 2014 from my research, Jakarta has higher percentage on non-food than on food consumption but the contribution from food products into the local economy gets higher every year. We can see this phenomena almost in every place. This research used qualitative approach to gather data and information regarding people’s perception about household solid waste from their consumption behavior. The data do not available on the lower level adminitration. From the focus group discussion in Setia Asih Village (Bekasi) showed that local people and government have less knowledge on household solid waste, especially the life cycle via food packaging and how to treat the waste. So, I build a concept to solve the mind-set issue on the sustainable consumption awareness through the life cycle assessment approach. Local people and government can used it to improve their quality of life (social and economy) and environmental condition.


2021 ◽  
Vol 3 (1) ◽  
pp. 152-161
Author(s):  
Patrycja Bałdowska-Witos ◽  
Adam Idzikowski

Abstract Eco-efficiency is a new concept of environmental analysis seeking to improve products, processes and manufacturing materials. The eco-efficiency analysis gives the opportunity to find the most effective solution with the lowest environmental burden in the bottle forming process. For this purpose, the LCA (Life Cycle Assessment) technique of environmental management was used to evaluate selected stages of the bottle forming process. The analysis was carried out using the Eco Indicator 99 method using the SimaPro software.


2021 ◽  
Vol 22 (2) ◽  
pp. 294-305
Author(s):  
Hazleen Anuar ◽  
Siti Munirah Salimah Abd Rashid ◽  
Nurfarahin Mohd. Nordin ◽  
Fathilah Ali ◽  
Yose Fachmi Buys ◽  
...  

As an effort to replace the petroleum-based polymers and reduce waste-related environmental problems, biopolymers are the best candidate due to their renewable, biodegradable and commercially viable. Initiative have been taken by developing durian skin fibre (DSF) reinforced polylactic acid (PLA) biocomposites with the addition of epoxidized palm oil (EPO). PLA/DSF biocomposites were fabricated via extrusion and then injection moulded. The biocomposites were assessed for its life cycle by developing a system boundary related to its fabrication processes using GaBi software. The life cycle assessment (LCA) of PLA/DSF biocomposites show that global warming potential (GWP) and acidification potential (AP) were the major impacts from PLA/DSF biocomposite. For PLA/DSF biocomposite, the results were 199.37 kg CO2 equiv. GWP and 0.58 kg SO2 equiv. AP. Meanwhile, for PLA/DSF/EPO biocomposite, the results obtained were 195.89 kg CO2 equiv. GWP and 0.57 kg SO2 equiv. AP. The GWP and AP were contributed by the electricity used in the fabrication of biocomposites. These impacts were due to the usage of electricity, which contributed to the emission of CO2. However, the PLA/DSF/EPO biocomposite had lower negative impacts because EPO improved the workability and processability of the biocomposite, and hence, reduced the amount of energy required for production. It can be concluded that the plasticized PLA/DSF biocomposite can be a potential biodegradable food packaging material as it has favourable properties and produces no waste. ABSTRAK: Biopolimer adalah terbaik dalam usaha mengganti polimer berasaskan-petroleum dalam mengurang masalah pencemaran-sisa. Ini kerana biopolimer boleh diperbaharui, biodegradasi dan sangat maju secara komersial. Inisiatif telah diambil dengan menghasilkan sabut kulit durian (DSF) bersama biokomposit asid polilaktik (PLA) dengan penambahan minyak kelapa sawit terepoksi (EPO). Biokomposit PLA/DSF direka melalui kaedah pemyemperitan dan acuan suntikan. Biokomposit ini dipantau kitar hidupnya dengan membina sistem sempadan berkaitan proses rekaan menggunakan perisian GaBi. Pengawasan kitar hidup (LCA) biokomposit PLA/DSF menunjukkan potensi pemanasan global (GWP) dan potensi pengasidan (AP) menyebabkan impak terbesar komposit PLA/DSF. Dapatan kajian menunjukkan 199.37 kg CO2 bagi GWP dan 0.58 kg SO2 bagi AP bagi biokomposit PLA/DSF. Sementara itu, dapatan kajian bagi biokomposit PLA/DSF/EPO adalah 195.89 kg CO2 bagi GWP dan 0.57 kg SO2 bagi AP. Kedua-dua GWP dan AP adalah disebabkan oleh penggunaan elektrik dalam proses pembuatan biokomposit. Ini adalah kesan daripada penggunaan elektrik, dan menyumbang kepada pembebasan CO2. Walau bagaimanapun, biokomposit PLA/DSF/EPO mempunyai kurang kesan negatif, kerana EPO telah menambah baik kebolehkerjaan dan kebolehprosesan biokomposit, menyebabkan kurang tenaga yang diperlukan dalam proses pembuatan. Kesimpulannya plastik biokomposit PLA/DSF berpotensi sebagai bahan biodegradasi bagi pembungkus makanan kerana ianya mempunyai ciri-ciri yang diperlukan dan tidak menghasilkan sisa buangan.


Author(s):  
Grégoire David ◽  
Giovanna Croxatto Vega ◽  
Joshua Sohn ◽  
Anna Ekman Nilsson ◽  
Arnaud Hélias ◽  
...  

Abstract Purpose The objective of the present study was to better understand the potential environmental benefit of using vine shoots (ViShs), an agricultural residue, as filler in composite materials. For that purpose, a comparative life cycle assessment (LCA) of a rigid tray made of virgin poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV, polylactic acid (PLA) or polypropylene (PP), and increasing content of ViSh particles was performed. The contribution of each processing step in the life cycle on the different environmental impacts was identified and discussed. Furthermore, the balance between the environmental and the economic benefits of composite trays was discussed. Methods This work presents a cradle-to-grave LCA of composite rigid trays. Once collected in vineyards, ViShs were dried and ground using dry fractionation processes, then mixed with a polymer matrix by melt extrusion to produce compounds that were finally injected to obtain rigid trays for food packaging. The density of each component was taken into account in order to compare trays with the same volume. The maximum filler content was set to 30 vol% according to recommendations from literature and industrial data. The ReCiPe 2016 Midpoint Hierarchist (H) methodology was used for the assessment using the cutoff system model. Results and discussion This study showed that bioplastics are currently less eco-friendly than PP. This is in part due to the fact that LCA does not account for, in existing tools, effects of microplastic accumulation and that bioplastic technologies are still under development with low tonnage. This study also demonstrated the environmental interest of the development of biocomposites by the incorporation of ViSh particles. The minimal filler content of interest depended on the matrices and the impact categories. Concerning global warming, composite trays had less impact than virgin plastic trays from 5 vol% for PHBV or PLA and from 20 vol% for PP. Concerning PHBV, the only biodegradable polymer in natural conditions in this study, the price and the impact on global warming are reduced by 25% and 20% respectively when 30 vol% of ViSh are added. Conclusion The benefit of using vine shoots in composite materials from an environmental and economical point of view was demonstrated. As a recommendation, the polymer production step, which constitutes the most important impact, should be optimized and the maximum filler content in composite materials should be increased.


2009 ◽  
Vol 14 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Sebastien Humbert ◽  
Vincent Rossi ◽  
Manuele Margni ◽  
Olivier Jolliet ◽  
Yves Loerincik

Sign in / Sign up

Export Citation Format

Share Document