Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions

2015 ◽  
Vol 113 (4) ◽  
pp. 304-309 ◽  
Author(s):  
Evanthia Anadioti ◽  
Steven A. Aquilino ◽  
David G. Gratton ◽  
Julie A. Holloway ◽  
Isabelle L. Denry ◽  
...  
2019 ◽  
Vol 45 (4) ◽  
pp. 416-425
Author(s):  
LH Raposo ◽  
PS Borella ◽  
DC Ferraz ◽  
LM Pereira ◽  
MS Prudente ◽  
...  

Clinical Relevance Marginal misfit of monolithic lithium disilicate ceramic crowns obtained from a chairside computer-aided design/computer-aided manufacturing system is affected after successive millings using a single diamond bur set. This fact can be critical for the longevity of indirect restorations. SUMMARY Objectives: This laboratory study aimed to assess the effect of successive crown millings on the marginal misfit of monolithic full-ceramic restorations obtained from two lithium disilicate systems, with a single diamond bur set used for each material in a chairside computer-aided design/computer-aided manufacturing (CAD/CAM) unit. Methods and Materials: Initially, 36 standardized composite resin dies were produced by additive manufacturing from a three-dimensional model of a right mandibular first molar with full-crown preparation generated in CAD software. Individual ceramic crowns were obtained in a chairside CAD/CAM unit (CEREC MC XL) for each composite resin die according to the ceramic system (IPS e.max CAD and Rosetta SM; n=18). Two new diamond burs were used as a set for obtaining the crowns in each experimental group (ceramic systems), and the milling periods were defined after three crown millings (T0-T6), when the diamond bur set of each system was removed for morphologic characterization using scanning electron microscopy (SEM). The marginal misfit of the crowns was assessed through coronal and sagittal micro-tomographic sectioning, in the vertical and horizontal directions of the ceramic crowns seated on their respective resin dies. The collected data were tabulated and subjected to one-way analysis of variance and Tukey's honestly significant difference test (α=0.05). Results: SEM images showed changes in the superficial morphology of the diamond bur sets, with progressive loss of the diamond granules after the successive millings of crowns for both experimental groups. Significant differences were detected in the marginal misfit of the crowns from both ceramic systems at the different milling periods (p<0.001). Conclusions: Diamond burs deteriorated after successive crown millings for both lithium disilicate ceramic systems. The marginal misfit of the crowns obtained increased with the successive use of the CAD/CAM diamond bur set employed for milling each ceramic material. In addition, new milling of full lithium disilicate ceramic crowns can be inappropriate after 11 successive millings for IPS e.max CAD and 12 for Rosetta SM, due to the increased marginal misfit observed under the parameters tested.


2013 ◽  
Vol 07 (S 01) ◽  
pp. S115-S118 ◽  
Author(s):  
Rafael Ferrone Andreiuolo ◽  
Carlos Eduardo Sabrosa ◽  
Katia Regina H. Cervantes Dias

ABSTRACTThe use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Hong Kim ◽  
Seunghan Oh ◽  
Soo-Hyuk Uhm

The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice—before and after crystallization—using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a pairedt-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α=0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P<0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120μm, which is the clinically acceptable threshold.


Sign in / Sign up

Export Citation Format

Share Document