Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study

2009 ◽  
Vol 117 (4) ◽  
pp. 454-462 ◽  
Author(s):  
Shuzo Kitayama ◽  
Peter Pilecki ◽  
Nasser A. Nasser ◽  
Theodora Bravis ◽  
Ron F. Wilson ◽  
...  
2013 ◽  
Vol 07 (S 01) ◽  
pp. S115-S118 ◽  
Author(s):  
Rafael Ferrone Andreiuolo ◽  
Carlos Eduardo Sabrosa ◽  
Katia Regina H. Cervantes Dias

ABSTRACTThe use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.


2016 ◽  
Vol 41 (6) ◽  
pp. 666-671 ◽  
Author(s):  
C Gillette ◽  
R Buck ◽  
N DuVall ◽  
S Cushen ◽  
M Wajdowicz ◽  
...  

SUMMARY Objective: To evaluate the significance of reduced axial wall height on retention of adhesively luted, all-ceramic, lithium disilicate premolar computer-aided design/computer-aided manufacturing (CAD/CAM) crowns based on preparations with a near ideal total occlusal convergence of 10°. Methods: Forty-eight recently extracted premolars were randomly divided into four groups (n=12). Each group received all-ceramic CAD/CAM crown preparations featuring axial wall heights of 0, 1, 2, and 3 mm, respectively, all with a 10° total occlusal convergence. Scanned preparations were fitted with lithium disilicate all-ceramic crowns that were luted with a self-etching resin cement. Specimens were tested to failure at a 45° angle to the tooth long axis with failure load converted to megapascals (MPa) based on the measured bonding surface area. Mean data were analyzed using analysis of variance/Tukey's post hoc test (α=0.05). Results: Lithium disilicate crowns adhesively luted on preparations with 0 axial wall height demonstrated significantly less failure resistance compared with the crowns luted on preparations with axial wall heights of 1 to 3 mm. There was no failure stress difference between preparations with 1 to 3 mm axial wall height. Conclusions: Under conditions of this study, adhesively luted lithium disilicate bicuspid crowns with a total occlusal convergence of 10° demonstrated similar failure resistance independent of axial wall height of 1 to 3 mm. This study provides some evidence that adhesion combined with an ideal total occlusal convergence may compensate for reduced axial wall height.


2012 ◽  
Vol 37 (5) ◽  
pp. 453-457 ◽  
Author(s):  
ST McGill ◽  
JR Holmes

SUMMARY Historically, the longevity of teeth restored with gold inlays, onlays, crowns, and partial veneer restorations is excellent. However, in-office computer-aided design and computer-aided manufacturing restorations, laboratory-constructed all-ceramic bonded restorations, and conventional ceramo-metal restorations are more common. The high price of gold, the difficulty of the preparation, and the fact that most dental schools are de-emphasizing the teaching of partial veneer restorations has created a situation whereby the 7/8 crown is rarely viewed as the treatment of choice. Time and experience will determine if the new ceramic materials, along with the all-important bonding agents, can achieve the success of a well-done, all-gold restoration.


2019 ◽  
Vol 45 (4) ◽  
pp. 416-425
Author(s):  
LH Raposo ◽  
PS Borella ◽  
DC Ferraz ◽  
LM Pereira ◽  
MS Prudente ◽  
...  

Clinical Relevance Marginal misfit of monolithic lithium disilicate ceramic crowns obtained from a chairside computer-aided design/computer-aided manufacturing system is affected after successive millings using a single diamond bur set. This fact can be critical for the longevity of indirect restorations. SUMMARY Objectives: This laboratory study aimed to assess the effect of successive crown millings on the marginal misfit of monolithic full-ceramic restorations obtained from two lithium disilicate systems, with a single diamond bur set used for each material in a chairside computer-aided design/computer-aided manufacturing (CAD/CAM) unit. Methods and Materials: Initially, 36 standardized composite resin dies were produced by additive manufacturing from a three-dimensional model of a right mandibular first molar with full-crown preparation generated in CAD software. Individual ceramic crowns were obtained in a chairside CAD/CAM unit (CEREC MC XL) for each composite resin die according to the ceramic system (IPS e.max CAD and Rosetta SM; n=18). Two new diamond burs were used as a set for obtaining the crowns in each experimental group (ceramic systems), and the milling periods were defined after three crown millings (T0-T6), when the diamond bur set of each system was removed for morphologic characterization using scanning electron microscopy (SEM). The marginal misfit of the crowns was assessed through coronal and sagittal micro-tomographic sectioning, in the vertical and horizontal directions of the ceramic crowns seated on their respective resin dies. The collected data were tabulated and subjected to one-way analysis of variance and Tukey's honestly significant difference test (α=0.05). Results: SEM images showed changes in the superficial morphology of the diamond bur sets, with progressive loss of the diamond granules after the successive millings of crowns for both experimental groups. Significant differences were detected in the marginal misfit of the crowns from both ceramic systems at the different milling periods (p<0.001). Conclusions: Diamond burs deteriorated after successive crown millings for both lithium disilicate ceramic systems. The marginal misfit of the crowns obtained increased with the successive use of the CAD/CAM diamond bur set employed for milling each ceramic material. In addition, new milling of full lithium disilicate ceramic crowns can be inappropriate after 11 successive millings for IPS e.max CAD and 12 for Rosetta SM, due to the increased marginal misfit observed under the parameters tested.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Ki-Hong Lee ◽  
In-Sung Yeo ◽  
Benjamin M. Wu ◽  
Jae-Ho Yang ◽  
Jung-Suk Han ◽  
...  

Purpose. The purpose of this study was to investigate the marginal fit of metal-free crowns made by three different computer-aided design/computer-aided manufacturing (CAD/CAM) systems.Materials and Methods. The maxillary left first premolar of a dentiform was prepared for all-ceramic crown restoration. Thirty all-ceramic premolar crowns were made, ten each manufactured by the Lava system, Cercon, and Cerec. Ten metal ceramic gold (MCG) crowns served as control. The marginal gap of each sample was measured under a stereoscopic microscope at 75x magnification after cementation. One-way ANOVA and the Duncan’s post hoc test were used for data analysis at the significance level of 0.05.Results. The mean (standard deviation) marginal gaps were 70.5 (34.4) μm for the MCG crowns, 87.2 (22.8) μm for Lava, 58.5 (17.6) μm for Cercon, and 72.3 (30.8) μm for Cerec. There were no significant differences in the marginal fit among the groups except that the Cercon crowns had significantly smaller marginal gaps than the Lava crowns(P<0.001).  Conclusions. Within the limitation of this study, all the metal-free restorations made by the digital CAD/CAM systems had clinically acceptable marginal accuracy.


2015 ◽  
Vol 113 (4) ◽  
pp. 304-309 ◽  
Author(s):  
Evanthia Anadioti ◽  
Steven A. Aquilino ◽  
David G. Gratton ◽  
Julie A. Holloway ◽  
Isabelle L. Denry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document