Study on the effectiveness of an independent biological phosphorus removal system based on immobilized biological fillers nitrogen removal system in municipal wastewater

Author(s):  
Xuyan Liu ◽  
Hong Yang ◽  
Shaolun Wang ◽  
Xiaoyue Fang ◽  
Xiaotong Wang ◽  
...  
2001 ◽  
Vol 2001 (9) ◽  
pp. 596-629
Author(s):  
Cesar R. Mota ◽  
Jacimaria R. Batista ◽  
Richard R. Unz ◽  
Heinrich Buch ◽  
Walter Johnson

2002 ◽  
Vol 45 (6) ◽  
pp. 61-76 ◽  
Author(s):  
H. Siegrist ◽  
L. Rieger ◽  
G. Koch ◽  
M. Kühnl ◽  
W. Gujer

An additional module for the prediction of enhanced biological phosphorus removal is presented on the basis of a calibrated version of ASM3. The module uses modified processes from ASM2d but neglects the fermentation of readily degradable substrate. Biomass decay is modeled in the form of endogenous respiration as in ASM3. The glycogen pool and biologically induced P-precipitation is not taken into account. The module was systematically calibrated with experimental data from various batch experiments, a full-scale WWTP and a pilot plant treating Swiss municipal wastewater. A standard parameter set allowed all data to be simulated.


2006 ◽  
Vol 54 (1) ◽  
pp. 81-89 ◽  
Author(s):  
T. Shoji ◽  
T. Nittami ◽  
M. Onuki ◽  
H. Satoh ◽  
T. Mino

The microbial community in a biological phosphorus removal process under different electron acceptor conditions was estimated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) assay and principal-component analysis (PCA). For this purpose, a lab-scale sequencing batch reactor (SBR) fed with municipal wastewater was operated under anaerobic–aerobic, anaerobic–anoxic–aerobic and anaerobic–anoxic conditions. The results of PCR-DGGE targeting the 16S rRNA gene indicated a significant shift in the microbial community with electron acceptor conditions. From the 16S rRNA-based PCA, the microbial shift implies that little oxygen supply caused the deterioration of aerobic bacteria, including aerobic polyphosphate-accumulating organisms (PAOs). Moreover, it also reflects the existence of nitrate-utilizing denitrifiers. On the other hand, although the band patterns of DGGE targeting a functional gene of denitrification (nirS) also showed the microbial shift, the result of PCA differed from that of 16S rRNA-based analysis. There is no conclusive proof that the bacteria represented as the dominant bands detected in the present study are denitrifying-PAOs so far, it should be worthwhile to identify the detected bacteria and to examine their traits as new denitrifying-PAO candidates.


2019 ◽  
Author(s):  
Paul Roots ◽  
Fabrizio Sabba ◽  
Alex F. Rosenthal ◽  
Yubo Wang ◽  
Quan Yuan ◽  
...  

AbstractWhile enhanced biological phosphorus removal (EBPR) is widely utilized for phosphorus (P) removal from wastewater, understanding of efficient process alternatives that allow combined biological P removal and shortcut nitrogen (N) removal, such as nitritation-denitritation, is limited. Here, we demonstrate efficient and reliable combined total N, P, and chemical oxygen demand removal (70%, 83%, and 81%, respectively) in a sequencing batch reactor (SBR) treating real mainstream wastewater (primary effluent) at 20°C. Anaerobic – aerobic cycling (with intermittent oxic/anoxic periods during aeration) was used to achieve consistent removal rates, nitrite oxidizing organism (NOO) suppression, and high effluent quality. Importantly, high resolution process monitoring coupled to ex situ batch activity assays demonstrated that robust biological P removal was coupled to energy and carbon efficient nitritation-denitritation, not simultaneous nitrification-denitrification, for the last >400 days of 531 total days of operation. Nitrous oxide emissions of 2.2% relative to the influent TKN (or 5.2% relative to total inorganic nitrogen removal) were similar to those measured in other shortcut N bioprocesses. No exogenous chemicals were needed to achieve consistent process stability and high removal rates in the face of frequent wet weather flows and highly variable influent concentrations. Process modeling reproduced the performance observed in the SBR and confirmed that nitrite drawdown via denitritation contributed to suppression of NOO activity.


Sign in / Sign up

Export Citation Format

Share Document