scholarly journals Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism

2020 ◽  
Vol 99 (3) ◽  
pp. 1421-1431 ◽  
Author(s):  
Peter V. Chrystal ◽  
Amy F. Moss ◽  
Ali Khoddami ◽  
Victor D. Naranjo ◽  
Peter H. Selle ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonia Yun Liu ◽  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Peter H. Selle

AbstractThe prime purpose of this review is to explore the pathways whereby progress towards reduced-crude protein (CP) diets and sustainable chicken-meat production may be best achieved. Reduced-CP broiler diets have the potential to attenuate environmental pollution from nitrogen and ammonia emissions; moreover, they have the capacity to diminish the global chicken-meat industry’s dependence on soybean meal to tangible extents. The variable impacts of reduced-CP broiler diets on apparent amino acid digestibility coefficients are addressed. The more accurate identification of amino acid requirements for broiler chickens offered reduced-CP diets is essential as this would diminish amino acid imbalances and the deamination of surplus amino acids. Deamination of amino acids increases the synthesis and excretion of uric acid for which there is a requirement for glycine, this emphasises the value of so-called “non-essential” amino acids. Starch digestive dynamics and their possible impact of glucose on pancreatic secretions of insulin are discussed, although the functions of insulin in avian species require clarification. Maize is probably a superior feed grain to wheat as the basis of reduced-CP diets; if so, the identification of the underlying reasons for this difference should be instructive. Moderating increases in starch concentrations and condensing dietary starch:protein ratios in reduced-CP diets may prove to be advantageous as expanding ratios appear to be aligned to inferior broiler performance. Threonine is specifically examined because elevated free threonine plasma concentrations in birds offered reduced-CP diets may be indicative of compromised performance. If progress in these directions can be realised, then the prospects of reduced-CP diets contributing to sustainable chicken-meat production are promising.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takaharu Katayama ◽  
Motoaki Sano ◽  
Jin Endo ◽  
Kentaro Hayashida ◽  
Tomohiro Matsuhashi ◽  
...  

[Introduction] Despite an increase in the levels of aldehydes, the heart from aldehyde dehydrogenase ( ALDH ) 2*2 -transgenic (Tg) mice, loss of function model of ALDH, exhibited a greater tolerance to oxidative stress via activation of amino acid metabolism leading to glutathione biosynthesis. This study was designed to identify the signaling cascades responsible for the activation of amino acid metabolism by aldehydes. [Methods & Results] (1) Phosphorylation of α -subunit of eukaryotic translation initiation factor 2 (eIF2 α ) and subsequent translational activation of ATF4 have been shown to induce amino acid metabolism as a common response to a wide variety of stressors. Consistent with this, phosphorylation levels of eIF2 α and protein expression of ATF4 were increased in ALDH2*2 -Tg hearts. (2) Among four eIF2 α kinases, general control non-depressible (GCN)2 kinase, a sensor for amino acid insufficiency, was activated in ALDH2*2 -Tg heart. (3) Quantification of intracellular amino acid demonstrated that free histidine concentration in ALDH2*2 -Tg heart was selectively reduced by 50% compared to that in non-Tg littermates. (4) To clarify the functional significance of observed reduction in histidine, ALDH2*2 -Tg mice were fed a high histidine diet. The phosphorylation levels of eIF2 α and the protein levels of ATF4 were diminished by 50% in ALDH2*2 -Tg mice fed the high histidine diet, in agreement with the normalization of histidine concentration. Accordingly, both enhanced tolerance to ischemia-reperfusion injury and elevated levels of glutathione were partially diminished in the heart from ALDH2*2 -Tg mice fed the high histidine diet compared to ALDH2*2 -Tg mice fed normal chow. (5) In culture, exposure to 4-hydroxy-2-nonenal (4-HNE) phosphorylated GCN2 and eIF2 α and increased protein levels of ATF4 in a time-dependent manner. (6) siRNA-mediated knockdown of GCN2 abrogated 4-HNE-induced induction of amino acid metabolic genes. [Conclusions] Activation of eIF2 α -ATF4 pathway via GCN2 kinase might be of special importance in the transcriptional control that coordinately promotes amino acid metabolism in response to aldehydes. Intracellular depletion of free histidine is at least partly involved in the activation of GCN2 kinase by aldehydes.


2016 ◽  
Vol 18 (4) ◽  
pp. 66-71 ◽  
Author(s):  
E. A. Mikhaylenko ◽  
◽  
O. O. Dyomshina ◽  
G. O. Ushakova ◽  
V. G. Griban ◽  
...  

1979 ◽  
Vol 7 (1) ◽  
pp. 261-262
Author(s):  
E. V. ROWSELL

Sign in / Sign up

Export Citation Format

Share Document