Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition, starch-protein digestive dynamics and amino acid metabolism in broiler chickens

2020 ◽  
Vol 261 ◽  
pp. 114387 ◽  
Author(s):  
Peter V. Chrystal ◽  
Amy F. Moss ◽  
Dafei Yin ◽  
Ali Khoddami ◽  
Victor D. Naranjo ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonia Yun Liu ◽  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Peter H. Selle

AbstractThe prime purpose of this review is to explore the pathways whereby progress towards reduced-crude protein (CP) diets and sustainable chicken-meat production may be best achieved. Reduced-CP broiler diets have the potential to attenuate environmental pollution from nitrogen and ammonia emissions; moreover, they have the capacity to diminish the global chicken-meat industry’s dependence on soybean meal to tangible extents. The variable impacts of reduced-CP broiler diets on apparent amino acid digestibility coefficients are addressed. The more accurate identification of amino acid requirements for broiler chickens offered reduced-CP diets is essential as this would diminish amino acid imbalances and the deamination of surplus amino acids. Deamination of amino acids increases the synthesis and excretion of uric acid for which there is a requirement for glycine, this emphasises the value of so-called “non-essential” amino acids. Starch digestive dynamics and their possible impact of glucose on pancreatic secretions of insulin are discussed, although the functions of insulin in avian species require clarification. Maize is probably a superior feed grain to wheat as the basis of reduced-CP diets; if so, the identification of the underlying reasons for this difference should be instructive. Moderating increases in starch concentrations and condensing dietary starch:protein ratios in reduced-CP diets may prove to be advantageous as expanding ratios appear to be aligned to inferior broiler performance. Threonine is specifically examined because elevated free threonine plasma concentrations in birds offered reduced-CP diets may be indicative of compromised performance. If progress in these directions can be realised, then the prospects of reduced-CP diets contributing to sustainable chicken-meat production are promising.


2016 ◽  
Vol 94 (suppl_2) ◽  
pp. 17-18
Author(s):  
C. E. Vonderohe ◽  
K. M. Mills ◽  
M. D. Asmus ◽  
E. R. Otto-Tice ◽  
C. V. Maxwell ◽  
...  

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 177-177
Author(s):  
Yue Guo ◽  
Andrea Hanson ◽  
Lei Wang ◽  
Brian Kerr ◽  
Pedro Urriola ◽  
...  

Abstract Feeding oxidized lipids compromises growth performance of pigs, but the metabolic events contributing to this adverse effect are not well defined. In this study, oxidized corn oil (OCO) was prepared by heating control corn oil (CCO) at 185 oC for 12 h. Weanling pigs (initial BW = 6.3 ± 1.4 kg) were fed 4 isocaloric diets containing 9% CCO, 6% CCO + 3% OCO, 3% CCO + 6% OCO, and 9% OCO, respectively. Pigs were provided ad libitum access to experimental diets in 3 phases (phase 1 = 4 d, phase 2 = 10 d and phase 3 = 21 d) for 35 d. Pig body weight (BW) and feed disappearance were determined at the d 0, 4, 14 and 35 to calculate average daily gain (ADG), average daily feed intake (ADFI) and gain to feed (G:F) ratio. Serum and liver samples collected on d 35 of feeding were analyzed by the liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis. Growth performance data were analyzed using the MIXED procedure of SAS and metabolomics data were analyzed by two-tailed student’s t test for comparison between different doses of OCO and CCO treatments. The result showed that dietary OCO decreased G:F ratio (P < 0.05) dose-dependently, but did not ADFI. Metabolomics analysis showed that OCO fed pigs decreased the levels of serum alanine (P < 0.01), tryptophan (P < 0.05), carnosine (P < 0.01), and glutamic acid (P < 0.05), while the levels of threonine (P < 0.05) was increased compared to CCO. Moreover, consuming OCO decreased the hepatic metabolites from threonine catabolism pathways, including α-ketobutyrate (P < 0.01), α-amino-butyrate (P < 0.05), and propionic acid (P < 0.05), compared to CCO treatment. In addition, OCO increased hepatic NAD level by activating tryptophan-NAD+ metabolic pathway. Overall, OCO selectively modulated amino acid metabolism in nursery pigs, which may further affect growth performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260285
Author(s):  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Shiva Greenhalgh ◽  
Mehdi Toghyani ◽  
Peter H. Selle ◽  
...  

The objective of this study was to investigate the impacts of dietary crude protein (CP), fishmeal and sorghum on nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein, amino acid concentrations in systemic plasma and their relevance to growth performance of broiler chickens using the Box-Behnken response surface design. The design consisted of three factors at three levels including dietary CP (190, 210, 230 g/kg), fishmeal (0, 50, 100 g/kg), and sorghum (0, 150, 300 g/kg). A total of 390 male, off-sex Ross 308 chicks were offered experimental diets from 14 to 35 days post-hatch. Growth performance, nutrient utilisation, starch and protein digestibilities and plasma free amino acids were determined. Dietary CP had a negative linear impact on weight gain where the transition from 230 to 190 g/kg CP increased weight gain by 9.43% (1835 versus 2008 g/bird, P = 0.006). Moreover, dietary CP linearly depressed feed intake (r = -0.486. P < 0.001). Fishmeal inclusions had negative linear impacts on weight gain (r = -0.751, P < 0.001) and feed intake (r = -0.495, P < 0.001). There was an interaction between dietary CP and fishmeal for FCR. However, growth performance was not influenced by dietary inclusions of sorghum. Total plasma amino acid concentrations were negatively related to weight gain (r = -0.519, P < 0.0001). The dietary transition from 0 to 100 g/kg fishmeal increased total amino acid concentrations in systemic plasma by 35% (771 versus 1037 μg/mL, P < 0.001). It may be deduced that optimal weight gain (2157 g/bird), optimal feed intake (3330 g/bird) and minimal FCR (1.544) were found in birds offered 190 g/kg CP diets without fishmeal inclusion, irrespective of sorghum inclusions. Both fishmeal and sorghum inclusions did not alter protein and starch digestion rate in broiler chickens; however, moderate reductions in dietary CP could advantage broiler growth performance.


Sign in / Sign up

Export Citation Format

Share Document