Abstract 1394: Sublethal Levels of Aldehydes Augmented Cardiac Anti-Oxidant Defense through Activation of eIF2 α -ATF4 Pathway via GCN2 Kinase

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takaharu Katayama ◽  
Motoaki Sano ◽  
Jin Endo ◽  
Kentaro Hayashida ◽  
Tomohiro Matsuhashi ◽  
...  

[Introduction] Despite an increase in the levels of aldehydes, the heart from aldehyde dehydrogenase ( ALDH ) 2*2 -transgenic (Tg) mice, loss of function model of ALDH, exhibited a greater tolerance to oxidative stress via activation of amino acid metabolism leading to glutathione biosynthesis. This study was designed to identify the signaling cascades responsible for the activation of amino acid metabolism by aldehydes. [Methods & Results] (1) Phosphorylation of α -subunit of eukaryotic translation initiation factor 2 (eIF2 α ) and subsequent translational activation of ATF4 have been shown to induce amino acid metabolism as a common response to a wide variety of stressors. Consistent with this, phosphorylation levels of eIF2 α and protein expression of ATF4 were increased in ALDH2*2 -Tg hearts. (2) Among four eIF2 α kinases, general control non-depressible (GCN)2 kinase, a sensor for amino acid insufficiency, was activated in ALDH2*2 -Tg heart. (3) Quantification of intracellular amino acid demonstrated that free histidine concentration in ALDH2*2 -Tg heart was selectively reduced by 50% compared to that in non-Tg littermates. (4) To clarify the functional significance of observed reduction in histidine, ALDH2*2 -Tg mice were fed a high histidine diet. The phosphorylation levels of eIF2 α and the protein levels of ATF4 were diminished by 50% in ALDH2*2 -Tg mice fed the high histidine diet, in agreement with the normalization of histidine concentration. Accordingly, both enhanced tolerance to ischemia-reperfusion injury and elevated levels of glutathione were partially diminished in the heart from ALDH2*2 -Tg mice fed the high histidine diet compared to ALDH2*2 -Tg mice fed normal chow. (5) In culture, exposure to 4-hydroxy-2-nonenal (4-HNE) phosphorylated GCN2 and eIF2 α and increased protein levels of ATF4 in a time-dependent manner. (6) siRNA-mediated knockdown of GCN2 abrogated 4-HNE-induced induction of amino acid metabolic genes. [Conclusions] Activation of eIF2 α -ATF4 pathway via GCN2 kinase might be of special importance in the transcriptional control that coordinately promotes amino acid metabolism in response to aldehydes. Intracellular depletion of free histidine is at least partly involved in the activation of GCN2 kinase by aldehydes.

2021 ◽  
Author(s):  
Hui Li ◽  
Shuaiwei Wang ◽  
Shuangshuang An ◽  
Biao Gao ◽  
Tieshan Teng ◽  
...  

Abstract Background Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulfide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. Methods Mice were randomly assigned to control, IRI, and NaHS (28, 56 and 100 µmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles for with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. Results Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1, and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pretreatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration, and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. Conclusions These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.


1997 ◽  
Vol 17 (7) ◽  
pp. 3640-3648 ◽  
Author(s):  
P L Blaiseau ◽  
A D Isnard ◽  
Y Surdin-Kerjan ◽  
D Thomas

Sulfur amino acid metabolism in Saccharomyces cerevisiae is regulated by the level of intracellular S-adenosylmethionine (AdoMet). Two cis-acting elements have been previously identified within the 5' upstream regions of the structural genes of the sulfur network. The first contains the CACGTG motif and is the target of the transcription activation complex Cbflp-Met4p-Met28p. We report here the identification of two new factors, Met31p and Met32p, that recognize the second cis-acting element. Met31p was isolated through the use of the one-hybrid method, while Met32p was identified during the analysis of the yeast methionine transport system. Met31p and Met32p are highly related zinc finger-containing proteins. Both LexA-Met31p and LexA-Met32p fusion proteins activate the transcription of a LexAop-containing promoter in a Met4p-dependent manner. Northern blot analyses of cells that do not express either Met31p and/or Met32p suggest that the function of the two proteins during the transcriptional regulation of the sulfur network varies from one gene to the other. While the expression of both the MET3 and MET14 genes was shown to strictly depend upon the presence of either Met31p or Met32p, the transcription of the MET25 gene is constitutive in cells lacking both Met31p and Met32p. These results therefore emphasise the diversity of the mechanisms allowing regulation of the expression of the methionine biosynthetic genes.


Reproduction ◽  
2016 ◽  
Vol 151 (5) ◽  
pp. 465-476 ◽  
Author(s):  
Jacqueline Gürke ◽  
Maria Schindler ◽  
S Mareike Pendzialek ◽  
René Thieme ◽  
Katarzyna J Grybel ◽  
...  

The mammalian target of rapamycin complex 1 (mTORC1) is known to be a central cellular nutrient sensor and master regulator of protein metabolism; therefore, it is indispensable for normal embryonic development. We showed previously in a diabetic pregnancy that embryonic mTORC1 phosphorylation is increased in case of maternal hyperglycaemia and hypoinsulinaemia. Further, the preimplantation embryo is exposed to increased L-leucine levels during a diabetic pregnancy. To understand how mTOR signalling is regulated in preimplantation embryos, we examined consequences of L-leucine and glucose stimulation on mTORC1 signalling and downstream targets inin vitrocultured preimplantation rabbit blastocysts andin vivo. High levels of L-leucine and glucose lead to higher phosphorylation of mTORC1 and its downstream target ribosomal S6 kinase 1 (S6K1) in these embryos. Further, L-leucine supplementation resulted in higher embryonic expression of genes involved in cell cycle (cyclin D1;CCND1), translation initiation (eukaryotic translation initiation factor 4E;EIF4E), amino acid transport (large neutral amino acid transporter 2; Lat2: geneSLC7A8) and proliferation (proliferating cell nuclear antigen;PCNA) in a mTORC1-dependent manner. Phosphorylation of S6K1 and expression patterns ofCCND1andEIF4Ewere increased in embryos from diabetic rabbits, while the expression of proliferation markerPCNAwas decreased. In these embryos, protein synthesis was increased and autophagic activity was decreased. We conclude that mammalian preimplantation embryos sense changes in nutrient supply via mTORC1 signalling. Therefore, mTORC1 may be a decisive mediator of metabolic programming in a diabetic pregnancy.


2011 ◽  
Vol 300 (5) ◽  
pp. H1753-H1761 ◽  
Author(s):  
Padmavathi Bandhuvula ◽  
Norman Honbo ◽  
Guan-Ying Wang ◽  
Zhu-Qiu Jin ◽  
Henrik Fyrst ◽  
...  

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia ( n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls ( n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity ( n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts ( n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P1 and S1P3 receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuh-Fung Chen ◽  
Kuo-Jen Wu ◽  
W. Gibson Wood

Paeonia lactiflorais a well-known traditional Chinese medicine. Paeoniflorin is an active component found inPaeonia lactiflora, which is used to treat smooth muscle spasms and pain and to protect the cardiovascular system. The objective of this study was to determine ifPaeonia lactiflorawould be protective in rodent models of cerebral ischemia and arterial intimal hyperplasia.Paeonia lactifloraextract (PLex) and paeoniflorin (PF) significantly attenuated cerebral infarction in ischemia/reperfusion injury rats and the severity of intimal hyperplasia in mice where the carotid artery was ligated. PLex and PF reduced PDGF-stimulated VSMC proliferation and migration in a dose-dependent manner by MTT, wound healing, and transwell assays. PF significantly reduced protein levels of Ras, MEK, p-MEK and p-ERK, but not MMP-2 and MMP-9. In summary,Paeonia lactiflorareduced cerebral ischemia and arterial intimal hyperplasia which were mainly made via the intermediary of PF. The protective effect of PF was related to the modulation of the Ras/MEK/ERK signaling pathway.


2019 ◽  
Vol 97 (5) ◽  
pp. 345-351 ◽  
Author(s):  
Ai-Jie Liu ◽  
Chun-Xia Pang ◽  
Guo-Qiang Liu ◽  
Shi-Duan Wang ◽  
Chun-Qin Chu ◽  
...  

We aimed to investigate whether the cardioprotection of sevoflurane against ischemia–reperfusion (IR) injury is via inhibiting endoplasmic reticulum stress. The rat in vivo model of myocardial IR injury was induced by ligation of the left anterior descending coronary artery. Sevoflurane significantly ameliorated the reduced cardiac function, increased infarct size, and elevated troponin I level and lactate dehydrogenase activity in plasma induced by IR injury. Sevoflurane suppressed the IR-induced myocardial apoptosis. The increased protein levels of glucose-regulated protein 78 and C/EBP homologous protein (CHOP) after myocardial IR were significantly reduced by sevoflurane. The protein levels of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (PERK), phosphorylated eukaryotic initiation factor 2 (eIF2α), and activating transcription factor 4 (ATF4) were significantly increased in rats with IR and attenuated by sevoflurane treatment. The phosphorylation of Akt was further activated by sevoflurane. The cardioprotection of sevoflurane could be blocked by wortmannin, a PI3K/Akt inhibitor. Our results suggest that the cardioprotection of sevoflurane against IR injury might be mediated by suppressing PERK/eIF2a/ATF4/CHOP signaling via activating the Akt pathway, which helps in understanding the novel mechanism of the cardioprotection of sevoflurane.


Sign in / Sign up

Export Citation Format

Share Document