Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements

2015 ◽  
Vol 117 ◽  
pp. 15-23 ◽  
Author(s):  
J.G. Luhmann ◽  
Y.-J. Ma ◽  
D.A. Brain ◽  
D. Ulusen ◽  
R.J. Lillis ◽  
...  
2004 ◽  
Vol 22 (1) ◽  
pp. 183-212 ◽  
Author(s):  
S. Savin ◽  
L. Zelenyi ◽  
S. Romanov ◽  
I. Sandahl ◽  
J. Pickett ◽  
...  

Abstract. We advance the achievements of Interball-1 and other contemporary missions in exploration of the magnetosheath-cusp interface. Extensive discussion of published results is accompanied by presentation of new data from a case study and a comparison of those data within the broader context of three-year magnetopause (MP) crossings by Interball-1. Multi-spacecraft boundary layer studies reveal that in ∼80% of the cases the interaction of the magnetosheath (MSH) flow with the high latitude MP produces a layer containing strong nonlinear turbulence, called the turbulent boundary layer (TBL). The TBL contains wave trains with flows at approximately the Alfvén speed along field lines and "diamagnetic bubbles" with small magnetic fields inside. A comparison of the multi-point measurements obtained on 29 May 1996 with a global MHD model indicates that three types of populating processes should be operative: large-scale (∼few RE) anti-parallel merging at sites remote from the cusp; medium-scale (few thousandkm) local TBL-merging of fields that are anti-parallel on average; small-scale (few hundredkm) bursty reconnection of fluctuating magnetic fields, representing a continuous mechanism for MSH plasma inflow into the magnetosphere, which could dominate in quasi-steady cases. The lowest frequency (∼1–2mHz) TBL fluctuations are traced throughout the magnetosheath from the post-bow shock region up to the inner magnetopause border. The resonance of these fluctuations with dayside flux tubes might provide an effective correlative link for the entire dayside region of the solar wind interaction with the magnetopause and cusp ionosphere. The TBL disturbances are characterized by kinked, double-sloped wave power spectra and, most probably, three-wave cascading. Both elliptical polarization and nearly Alfvénic phase velocities with characteristic dispersion indicate the kinetic Alfvénic nature of the TBL waves. The three-wave phase coupling could effectively support the self-organization of the TBL plasma by means of coherent resonant-like structures. The estimated characteristic scale of the "resonator" is of the order of the TBL dimension over the cusps. Inverse cascades of kinetic Alfvén waves are proposed for forming the larger scale "organizing" structures, which in turn synchronize all nonlinear cascades within the TBL in a self-consistent manner. This infers a qualitative difference from the traditional approach, wherein the MSH/cusp interaction is regarded as a linear superposition of magnetospheric responses on the solar wind or MSH disturbances. Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers) – Space plasma physics (turbulence; nonlinear phenomena)


2015 ◽  
Vol 120 (9) ◽  
pp. 7857-7872 ◽  
Author(s):  
Chuanfei Dong ◽  
Stephen W. Bougher ◽  
Yingjuan Ma ◽  
Gabor Toth ◽  
Yuni Lee ◽  
...  

2020 ◽  
Author(s):  
Eduard Dubinin ◽  
Markus Fraenz ◽  
Marin Pätzold ◽  
Joachim Woch ◽  
Kai Fan ◽  
...  

<p>Does an intrinsic field inhibits or enhances ion escape from planetary ionospheres is still an unsolved issue. Mars does not possess a global intrinsic magnetic field but instead has the strong crustal magnetic fields localized mainly in the southern hemisphere. The crustal magnetic field significantly influences the interaction of the solar wind with Mars adding features typical for planets with a global intrinsic magnetic field. Therefore it is interesting to compare ion losses from the ionosphere regions with and without strong crustal fields. Recently such studies were performed and have shown a protective effect of the crustal field on escape of the energized (E > 30 eV) oxygen ions (e.g. Fan et al., Geophysical Review Letters, 2019). However, the main bulk of escaping ions at Mars have energy lower than 30 eV. We will present the results of influence of the crustal magnetic field at Mars on the total losses of O<sup>+</sup> and O<sub>2</sub><sup>+</sup> ions. The global picture of ion escape occurs more complex. Effects of larger ionospheric areas above the crustal field sources exposed by solar wind compensate a shielding effect at lower altitudes. As a result, the ion losses from the southern ionosphere of Mars might be even higher than losses from the northern “unmagnetized” ionosphere.</p>


2020 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
ShiBang Li ◽  
◽  
HaoYu Lu ◽  
Jun Cui ◽  
YiQun Yu ◽  
...  

1973 ◽  
Vol 78 (28) ◽  
pp. 6741-6748 ◽  
Author(s):  
G. L. Siscoe ◽  
B. Goldstein

2014 ◽  
Vol 10 (S305) ◽  
pp. 121-126
Author(s):  
L. Strachan ◽  
Y.-K. Ko ◽  
J. D. Moses ◽  
J. M. Laming ◽  
F. Auchere ◽  
...  

AbstractMagnetic fields in the solar atmosphere provide the energy for most varieties of solar activity, including high-energy electromagnetic radiation, solar energetic particles, flares, and coronal mass ejections, as well as powering the solar wind. Despite the fundamental role of magnetic fields in solar and heliospheric physics, there exist only very limited measurements of the field above the base of the corona. What is needed are direct measurements of not only the strength and orientation of the magnetic field but also the signatures of wave motions in order to better understand coronal structure, solar activity, and the role of MHD waves in heating and accelerating the solar wind. Fortunately, the remote sensing instrumentation used to make magnetic field measurements is also well suited to measure the Doppler signature of waves in the solar structures. We present here a mission concept for the Waves And Magnetism In the Solar Atmosphere (WAMIS) experiment which is proposed for a NASA long-duration balloon flight.


2006 ◽  
Vol 54 (13-14) ◽  
pp. 1482-1495 ◽  
Author(s):  
C.T. Russell ◽  
J.G. Luhmann ◽  
R.J. Strangeway

1974 ◽  
Vol 52 (18) ◽  
pp. 1759-1764 ◽  
Author(s):  
F. T. Hedgcock ◽  
S. Lenis ◽  
P. L. Li ◽  
J. O. Ström-Olsen ◽  
E. F. Wassermann

We have extended the low temperature magnetic anisotropy measurements on single crystals of zinc containing up to 600 p.p.m. manganese from magnetic fields of 9 to 56 kG. The crystal field splitting parameters determined at low magnetic fields also characterizes the magnetic anisotropy at high magnetic fields. Manganese–manganese interaction effects are observed in the magnetic anisotropy at manganese concentrations greater than 300 p.p.m. Low temperature magnetic anisotropy measurements on single crystals of zinc containing up to 164 p.p.m. chromium are reported and indicate a crystal field splitting of 0.16 K for the chromium ion.


Sign in / Sign up

Export Citation Format

Share Document