Reply to Lowe, D.J., Wilson, C.J.N., Newnham, R.M., Hogg, A.G. comment on Grapes, R., Rieser, U., Wang, N., 2010. Optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand. Quaternary Geochronology 5, doi:10.1016/j.quageo.2009.01.004, 2010

2010 ◽  
Vol 5 (4) ◽  
pp. 497-501 ◽  
Author(s):  
Rodney H. Grapes ◽  
Uwe Rieser ◽  
Ningsheng Wang
2017 ◽  
Vol 44 (22) ◽  
pp. 11,301-11,310 ◽  
Author(s):  
Robert Zinke ◽  
James F. Dolan ◽  
Edward J. Rhodes ◽  
Russ Van Dissen ◽  
Christopher P. McGuire

Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 367-410
Author(s):  
Leonie Peti ◽  
Kathryn E. Fitzsimmons ◽  
Jenni L. Hopkins ◽  
Andreas Nilsson ◽  
Toshiyuki Fujioka ◽  
...  

Abstract. Northern New Zealand is an important location for understanding Last Glacial Interval (LGI) palaeoclimate dynamics, since it is influenced by both tropical and polar climate systems which have varied in relative strength and timing. Sediments from the Auckland Volcanic Field maar lakes preserve records of such large-scale climatic influences on regional palaeo-environment changes, as well as past volcanic eruptions. The sediment sequence infilling Orakei maar lake is continuous, laminated, and rapidly deposited, and it provides a high-resolution (sedimentation rate above ∼ 1 m kyr−1) archive from which to investigate the dynamic nature of the northern New Zealand climate system over the LGI. Here we present the chronological framework for the Orakei maar sediment sequence. Our chronology was developed using Bayesian age modelling of combined radiocarbon ages, tephrochronology of known-age rhyolitic tephra marker layers, 40Ar∕39Ar-dated eruption age of a local basaltic volcano, luminescence dating (using post-infrared–infrared stimulated luminescence, or pIR-IRSL), and the timing of the Laschamp palaeomagnetic excursion. We have integrated our absolute chronology with tuning of the relative palaeo-intensity record of the Earth's magnetic field to a global reference curve (PISO-1500). The maar-forming phreatomagmatic eruption of the Orakei maar is now dated to > 132 305 years (95 % confidence range: 131 430 to 133 180 years). Our new chronology facilitates high-resolution palaeo-environmental reconstruction for northern New Zealand spanning the last ca. 130 000 years for the first time as most NZ records that span all or parts of the LGI are fragmentary, low-resolution, and poorly dated. Providing this chronological framework for LGI climate events inferred from the Orakei sequence is of paramount importance in the context of identification of leads and lags in different components of the Southern Hemisphere climate system as well as identification of Northern Hemisphere climate signals.


2012 ◽  
Vol 8 ◽  
pp. 10-22 ◽  
Author(s):  
Ann V. Rowan ◽  
Helen M. Roberts ◽  
Merren A. Jones ◽  
Geoff A.T. Duller ◽  
Steve J. Covey-Crump ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Aaron Micallef ◽  
Remus Marchis ◽  
Nader Saadatkhah ◽  
Potpreecha Pondthai ◽  
Mark E. Everett ◽  
...  

Abstract. Gully formation has been associated to groundwater seepage in unconsolidated sand- to gravel-sized sediments. Our understanding of gully evolution by groundwater seepage mostly relies on experiments and numerical simulations, and these rarely take into consideration contrasts in lithology and permeability. In addition, process-based observations and detailed instrumental analyses are rare. As a result, we have a poor understanding of the temporal scale of gully formation by groundwater seepage and the influence of geological heterogeneity on their formation. This is particularly the case for coastal gullies, where the role of groundwater in their formation and evolution has rarely been assessed. We address these knowledge gaps along the Canterbury coast of the South Island (New Zealand) by integrating field observations, luminescence dating, multi-temporal unoccupied aerial vehicle and satellite data, time domain electromagnetic data and slope stability modelling. We show that gully formation is a key process shaping the sandy gravel cliffs of the Canterbury coastline. It is an episodic process associated to groundwater flow that occurs once every 227 d on average, when rainfall intensities exceed 40 mm d−1. The majority of the gullies in a study area southeast (SE) of Ashburton have undergone erosion, predominantly by elongation, during the last 11 years, with the most recent episode occurring 3 years ago. Gullies longer than 200 m are relict features formed by higher groundwater flow and surface erosion > 2 ka ago. Gullies can form at rates of up to 30 m d−1 via two processes, namely the formation of alcoves and tunnels by groundwater seepage, followed by retrogressive slope failure due to undermining and a decrease in shear strength driven by excess pore pressure development. The location of gullies is determined by the occurrence of hydraulically conductive zones, such as relict braided river channels and possibly tunnels, and of sand lenses exposed across sandy gravel cliffs. We also show that the gully planform shape is generally geometrically similar at consecutive stages of evolution. These outcomes will facilitate the reconstruction and prediction of a prevalent erosive process and overlooked geohazard along the Canterbury coastline.


2020 ◽  
Author(s):  
Aaron Micallef ◽  
Remus Marchis ◽  
Nader Saadatkhah ◽  
Roger Clavera-Gispert ◽  
Potpreecha Pondthai ◽  
...  

Abstract. Box canyon formation has been associated to groundwater seepage in unconsolidated sand to gravel sized sediments. Our understanding of box canyon evolution mostly relies on experiments and numerical simulations, and these rarely take into consideration contrasts in lithology and permeability. In addition, process-based observations and detailed instrumental analyses are rare. As a result, we have a poor understanding of the temporal scale of box canyon formation and the influence of geological heterogeneity on their formation. We address these issues along the Canterbury coast of the South Island (New Zealand) by integrating field observations, optically stimulated luminescence dating, multi-temporal Unmanned Aerial Vehicle and satellite data, time-domain electromagnetic data, and slope stability and landscape evolution modelling. We show that box canyon formation is a key process shaping the sandy gravel cliffs of the Canterbury coastline. It is an episodic process associated to groundwater flow that occurs once every 227 days on average, when rainfall intensities exceed 40 mm per day. The majority of the box canyons in a study area SE of Ashburton has undergone erosion, predominantly by elongation, during the last 11 years, with the most recent episode occurring 3 years ago. The two largest box canyons have not been eroded in the last 2 ka, however. Canyons can form at rates of up to 30 m per day via two processes: the formation of alcoves and tunnels by groundwater seepage, followed by retrogressive slope failure due to undermining and a decrease in shear strength driven by excess pore pressure development. The location of box canyons is determined by the occurrence of hydraulically-conductive zones, such as relict braided river channels and possibly tunnels, and of sand lenses exposed across sandy gravel cliff. We also show that box canyon formation is best represented by a linear diffusive model and geometrical scaling.


2020 ◽  
Author(s):  
Leonie Peti ◽  
Kathryn E. Fitzsimmons ◽  
Jenni L. Hopkins ◽  
Andreas Nilsson ◽  
Toshiyuki Fujioka ◽  
...  

Abstract. Northern New Zealand is an important site for understanding Last Glacial Interval (LGI) paleoclimate dynamics, since it is influenced by both tropical and polar climate systems which have varied in relative strength and timing of associated changes. The Auckland Volcanic Field maar lakes preserve these climatic influences on the regional paleoenvironment, as well as past volcanic eruptions, in their sedimentary infill. The sediment sequence infilling Orakei maar lake is continuous, laminated, high-resolution and provides a robust archive from which to investigate the dynamic nature of the northern New Zealand climate system over the LGI. Here we present the chronological framework for the Orakei maar sediment sequence. Our chronology was developed combining Bayesian age modelling of combined radiocarbon ages, tephrochronology of known-age rhyolitic tephra marker layers, 40Ar/39Ar-dated eruption age of a local basaltic volcano, luminescence dating (using post infrared-infrared stimulated luminescence, or pIR-IRSL), and the timing of the Laschamp paleomagnetic excursion. We also investigated the application of meteoric (cosmogenic) Beryllium-10 variability to improve the age-depth model by complementing relative paleointensity measurements. However, the results were apparently influenced by some unaccounted catchment process and unable to reach satisfactory interpretation, apart from confirming the presence of the Laschamp excursion, and therefore the 10Be data are not used in the production of the final age model. We have integrated our absolute chronology with tuning of the relative paleointensity record of the Earth’s magnetic field to a global reference curve (PISO-1500). The maar-forming phreatomagmatic eruption of the Orakei maar is now dated to > 130,120 yr (95 % confidence range 128,665 to 131,560 yr). Our new chronology facilitates high-resolution paleoenvironmental reconstruction for northern New Zealand spanning the last ca. 130,000 years for the first time as most NZ records that spall all or parts of the LGI are fragmentary, low-resolution and poorly dated. Providing this chronological framework for LGI climate events inferred from the Orakei sequence is of paramount importance in the context of identification of leads and lags in different components of the Southern Hemisphere climate system as well as identification of Northern Hemisphere climate signals.


Sign in / Sign up

Export Citation Format

Share Document