Optical luminescence dating of uplifted marine terraces along the Akatore Fault near Dunedin, South Island, New Zealand

2000 ◽  
Vol 43 (3) ◽  
pp. 419-424 ◽  
Author(s):  
J. Rees‐Jones ◽  
W. J. Rink ◽  
R. J. Norris ◽  
N. J. Litchfield
Science ◽  
1988 ◽  
Vol 240 (4853) ◽  
pp. 803-804 ◽  
Author(s):  
C. M. WARD

1990 ◽  
Vol 34 (1) ◽  
pp. 86-100 ◽  
Author(s):  
M. Royd Bussell

AbstractCover beds on uplifted Quaternary marine terraces in the Taranaki-Wanganui area of New Zealand include organic deposits which yield abundant pollen. In the west at Ohawe, marine shore platform deposits are overlain by laterally extensive lignites and laharic breccia, interbedded with alluvium and capped by tephra-rich loess. Following a time of presumably interglacial marine deposition on the platform, a long period of glacial climate is suggested by pollen floras dominated by grass and shrubland taxa. Trees were sparse, but the abundance of podocarps, Nothofagus, and tree ferns increased during at least one interval, suggesting minor climatic amelioration. Near the top of the section, a major change in regional vegetation is recorded by a dominance of pollen derived from podocarp-hardwood forest taxa, including Ascarina, interpreted as indicating a fully interglacial climate. The marine platform, previously assigned to oxygen isotope substage 5e, is now placed in stage 7. The overlying deposits were deposited during glacial stage 6, while interglacial substage 5e is recorded by sediment and pollen assemblages near the top of the section.


2020 ◽  
Vol 110 (2) ◽  
pp. 825-849 ◽  
Author(s):  
Nicola J. Litchfield ◽  
Kate J. Clark ◽  
Ursula A. Cochran ◽  
Alan S. Palmer ◽  
Joshu Mountjoy ◽  
...  

ABSTRACT Recent earthquakes involving multiple fault ruptures highlight the need to evaluate complex coastal deformation mechanisms, which are important for understanding plate boundary kinematics and seismic and tsunami hazards. We compare ages and uplift of the youngest Holocene marine terraces at Puatai Beach and Pakarae River mouth (∼10  km apart) in the northern Hikurangi subduction margin to examine whether uplift is the result of subduction earthquakes or upper-plate fault earthquakes. From stepped platform-cliff morphology, we infer uplift during 2–3 earthquakes and calculate an average uplift-per-event of 2.9±0.5  m at Puatai Beach and 2.0±0.5  m at Pakarae River mouth. Radiocarbon ages from the youngest beach deposit shells on each terrace and a tephra coverbed on one terrace constrain the timing of earthquakes to 1770–1710, 1100–910, and 420–250 cal. B.P. at Puatai Beach, and 1490–1290 and 660–530 cal. B.P. at Pakarae River mouth. The ages differ at each site indicating uplift is neither the result of subduction earthquakes nor single upper-plate fault earthquakes. A reinterpretation of new and existing bathymetry and seismic reflection data, combined with dislocation modeling, indicates that near-shore fault segmentation is more complex than previously thought and ruptures likely involve multiple upper-plate faults. Future updates of the New Zealand National Seismic Hazard Model should revise the northern Hikurangi subduction seismic sources so that rupture does not uplift Puatai Beach and Pakarae River mouth and include new near-shore upper-plate faults as multifault sources.


2017 ◽  
Vol 44 (22) ◽  
pp. 11,301-11,310 ◽  
Author(s):  
Robert Zinke ◽  
James F. Dolan ◽  
Edward J. Rhodes ◽  
Russ Van Dissen ◽  
Christopher P. McGuire

Sign in / Sign up

Export Citation Format

Share Document