scholarly journals Highly Variable Latest Pleistocene‐Holocene Incremental Slip Rates on the Awatere Fault at Saxton River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating

2017 ◽  
Vol 44 (22) ◽  
pp. 11,301-11,310 ◽  
Author(s):  
Robert Zinke ◽  
James F. Dolan ◽  
Edward J. Rhodes ◽  
Russ Van Dissen ◽  
Christopher P. McGuire
Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1558-1584
Author(s):  
Alexandra E. Hatem ◽  
James F. Dolan ◽  
Robert W. Zinke ◽  
Robert M. Langridge ◽  
Christopher P. McGuire ◽  
...  

Abstract Geomorphic field and aerial lidar mapping, coupled with fault-parallel trenching, reveals four progressive offsets of a stream channel and an older offset of the channel headwaters and associated fill terrace–bedrock contact at Hossack Station along the Conway segment of the Hope fault, the fastest-slipping fault within the Marlborough fault system in northern South Island, New Zealand. Radiocarbon and luminescence dating of aggradational surface deposition and channel initiation and abandonment event horizons yields not only an average dextral rate of ∼15 mm/yr since ca. 14 ka, but also incremental slip rates for five different time periods (spanning hundreds to thousands of years) during Holocene to latest Pleistocene time. These incremental rates vary through time and are, from youngest to oldest: 8.2 +2.7/−1.5 mm/yr averaged since 1.1 ka; 32.7 +∼124.9/−10.1 mm/yr averaged over 1.61–1.0 ka; 19.1 ± 0.8 mm/yr between 5.4 and 1.6 ka; 12.0 ± 0.9 mm/yr between 9.4 and 5.4 ka, and 13.7 +4.0/−3.4 mm/yr from 13.8 to 9.4 ka, with generally faster rates in the mid- to late Holocene relative to slower rates prior to ca. 5.4 ka. The most pronounced variation in rates occurs between the two youngest intervals, which are averaged over shorter time spans (≤1700 yr) than the three older incremental rates (3700–4500 yr). This suggests that the factor of ∼1.5× variations in Hope fault slip rate observed in the three older, longer-duration incremental rates may mask even greater temporal variations in rate over shorter time scales.


2021 ◽  
Author(s):  
◽  
B. Peter Baxter

<p>This thesis documents processing carried out on cGPS data from 115 sites in the North Island and the top of the South Island of New Zealand in order to produce a catalogue of slow slip events (SSEs) for the Hikurangi Margin covering the period Jan 2000 to Feb 2014. It covers the background to the concept of SSEs and the reporting to date on their occurrence along the Margin, the methods used in the processing and analysis, the results of each significant step, and discussion of the results.  It has been shown that the processing route adopted in this work has reduced the average noise levels in the cGPS data by up to 67%, and has eliminated virtually all correlated (“pink”) noise, thus enabling the detection of small-amplitude events (~ 2mm in cGPS signals).  One hundred and fifty events are catalogued in total, of which 137 are considered likely to be SSEs or similar. The catalogue includes estimates of the uncertainty in each parameter and is thus considered the most comprehensive to date. Sixteen of the inversion results were able to be directly compared with published information and showed satisfactory agreement on location and equivalent moment magnitudes.  The important aspects of the project that have been developed further than has been documented to date in the literature include: partitioning of the secular velocity field over the margin to allow the underlying tectonic signal to be better understood; detailed characterization of the temporal evolution of the SSEs; the identification of approximately 40 events that show slips in the opposite direction to that expected; and some preliminary conclusions concerning event scaling.  One of the objectives of the project was to identify whether there were fundamental differences in the characteristics of SSEs in the northeast and southwest of the margin. On the basis of the analyses to date, it appears that the events form a continuum, at least in terms of depth, temporal evolution, source slip rates and scaling, but in general terms the events in the southwest have been confirmed to be of longer duration than those in the northeast.  The project has identified further work that needs to be carried out or is ongoing in order to maximize the value of these new results.</p>


Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 367-410
Author(s):  
Leonie Peti ◽  
Kathryn E. Fitzsimmons ◽  
Jenni L. Hopkins ◽  
Andreas Nilsson ◽  
Toshiyuki Fujioka ◽  
...  

Abstract. Northern New Zealand is an important location for understanding Last Glacial Interval (LGI) palaeoclimate dynamics, since it is influenced by both tropical and polar climate systems which have varied in relative strength and timing. Sediments from the Auckland Volcanic Field maar lakes preserve records of such large-scale climatic influences on regional palaeo-environment changes, as well as past volcanic eruptions. The sediment sequence infilling Orakei maar lake is continuous, laminated, and rapidly deposited, and it provides a high-resolution (sedimentation rate above ∼ 1 m kyr−1) archive from which to investigate the dynamic nature of the northern New Zealand climate system over the LGI. Here we present the chronological framework for the Orakei maar sediment sequence. Our chronology was developed using Bayesian age modelling of combined radiocarbon ages, tephrochronology of known-age rhyolitic tephra marker layers, 40Ar∕39Ar-dated eruption age of a local basaltic volcano, luminescence dating (using post-infrared–infrared stimulated luminescence, or pIR-IRSL), and the timing of the Laschamp palaeomagnetic excursion. We have integrated our absolute chronology with tuning of the relative palaeo-intensity record of the Earth's magnetic field to a global reference curve (PISO-1500). The maar-forming phreatomagmatic eruption of the Orakei maar is now dated to > 132 305 years (95 % confidence range: 131 430 to 133 180 years). Our new chronology facilitates high-resolution palaeo-environmental reconstruction for northern New Zealand spanning the last ca. 130 000 years for the first time as most NZ records that span all or parts of the LGI are fragmentary, low-resolution, and poorly dated. Providing this chronological framework for LGI climate events inferred from the Orakei sequence is of paramount importance in the context of identification of leads and lags in different components of the Southern Hemisphere climate system as well as identification of Northern Hemisphere climate signals.


2012 ◽  
Vol 8 ◽  
pp. 10-22 ◽  
Author(s):  
Ann V. Rowan ◽  
Helen M. Roberts ◽  
Merren A. Jones ◽  
Geoff A.T. Duller ◽  
Steve J. Covey-Crump ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Aaron Micallef ◽  
Remus Marchis ◽  
Nader Saadatkhah ◽  
Potpreecha Pondthai ◽  
Mark E. Everett ◽  
...  

Abstract. Gully formation has been associated to groundwater seepage in unconsolidated sand- to gravel-sized sediments. Our understanding of gully evolution by groundwater seepage mostly relies on experiments and numerical simulations, and these rarely take into consideration contrasts in lithology and permeability. In addition, process-based observations and detailed instrumental analyses are rare. As a result, we have a poor understanding of the temporal scale of gully formation by groundwater seepage and the influence of geological heterogeneity on their formation. This is particularly the case for coastal gullies, where the role of groundwater in their formation and evolution has rarely been assessed. We address these knowledge gaps along the Canterbury coast of the South Island (New Zealand) by integrating field observations, luminescence dating, multi-temporal unoccupied aerial vehicle and satellite data, time domain electromagnetic data and slope stability modelling. We show that gully formation is a key process shaping the sandy gravel cliffs of the Canterbury coastline. It is an episodic process associated to groundwater flow that occurs once every 227 d on average, when rainfall intensities exceed 40 mm d−1. The majority of the gullies in a study area southeast (SE) of Ashburton have undergone erosion, predominantly by elongation, during the last 11 years, with the most recent episode occurring 3 years ago. Gullies longer than 200 m are relict features formed by higher groundwater flow and surface erosion > 2 ka ago. Gullies can form at rates of up to 30 m d−1 via two processes, namely the formation of alcoves and tunnels by groundwater seepage, followed by retrogressive slope failure due to undermining and a decrease in shear strength driven by excess pore pressure development. The location of gullies is determined by the occurrence of hydraulically conductive zones, such as relict braided river channels and possibly tunnels, and of sand lenses exposed across sandy gravel cliffs. We also show that the gully planform shape is generally geometrically similar at consecutive stages of evolution. These outcomes will facilitate the reconstruction and prediction of a prevalent erosive process and overlooked geohazard along the Canterbury coastline.


2020 ◽  
Author(s):  
Aaron Micallef ◽  
Remus Marchis ◽  
Nader Saadatkhah ◽  
Roger Clavera-Gispert ◽  
Potpreecha Pondthai ◽  
...  

Abstract. Box canyon formation has been associated to groundwater seepage in unconsolidated sand to gravel sized sediments. Our understanding of box canyon evolution mostly relies on experiments and numerical simulations, and these rarely take into consideration contrasts in lithology and permeability. In addition, process-based observations and detailed instrumental analyses are rare. As a result, we have a poor understanding of the temporal scale of box canyon formation and the influence of geological heterogeneity on their formation. We address these issues along the Canterbury coast of the South Island (New Zealand) by integrating field observations, optically stimulated luminescence dating, multi-temporal Unmanned Aerial Vehicle and satellite data, time-domain electromagnetic data, and slope stability and landscape evolution modelling. We show that box canyon formation is a key process shaping the sandy gravel cliffs of the Canterbury coastline. It is an episodic process associated to groundwater flow that occurs once every 227 days on average, when rainfall intensities exceed 40 mm per day. The majority of the box canyons in a study area SE of Ashburton has undergone erosion, predominantly by elongation, during the last 11 years, with the most recent episode occurring 3 years ago. The two largest box canyons have not been eroded in the last 2 ka, however. Canyons can form at rates of up to 30 m per day via two processes: the formation of alcoves and tunnels by groundwater seepage, followed by retrogressive slope failure due to undermining and a decrease in shear strength driven by excess pore pressure development. The location of box canyons is determined by the occurrence of hydraulically-conductive zones, such as relict braided river channels and possibly tunnels, and of sand lenses exposed across sandy gravel cliff. We also show that box canyon formation is best represented by a linear diffusive model and geometrical scaling.


2021 ◽  
Author(s):  
Nimrod Wieler ◽  
Amit Mushkin ◽  
Eitan Shelef ◽  
Huiping Zhang ◽  
Amir Sagy ◽  
...  

&lt;p&gt;Slip partitioning along the northern boundary of the Tibetan Plateau is essential for understanding regional deformation and the seismic potential of the different faults that accommodate it. Within this framework the Altyn Tagh Fault (ATF) is commonly viewed as the primary structure that separates the Tibetan Plateau from the stable Gobi-Alashan block to the north. Late Quaternary sinistral slip rates of 8-12 mm/yr across the central ATF between 86&amp;#176; and 93&amp;#176;E decrease eastwards to zero as the fault approaches its mid-continental termination at ~97&amp;#176;E. To better understand how late Quaternary slip is partitioned along the ATF&amp;#8217;s eastern termination we obtained new slip-rate measurements&amp;#160; for the ~200-km-long left-lateral ENE striking Sanweishan Fault (SSF) located ~60 km north of the ATF between 94&amp;#176;-96&amp;#176;E near the town of Dunhuang.&lt;/p&gt;&lt;p&gt;Multiple sinistral offsets ranging up to 600 m were identified by linking the clast assemblage of offset alluvial fan remnants with their provenance upstream of the fault. &amp;#160;Luminescence dating revealed depositional ages ranging from 100 - 200 ka for the offset features and time-invariant minimum sinistral slip of 2.5&amp;#177;1 mm/yr during the last ~200 ka, which is approximately an order of magnitude higher than previously reported slip-rates for the SSF. Our results indicate that the SSF and the eastern segment of the ATF accommodate comparable magnitudes of late Quaternary slip. Considering this substantial transfer of lateral slip as far as 60 km north of the eastern ATF we propose that the SSF may represent juvenile northeastward expansion of the Tibetan Plateau into previously stable parts of the Gobi-Alashan block.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document