Late Quaternary humidity and aridity dynamics in the northeast Rub' al-Khali, United Arab Emirates: Implications for early human dispersal and occupation of eastern Arabia

2013 ◽  
Vol 300 ◽  
pp. 292-301 ◽  
Author(s):  
Oliver A.C. Atkinson ◽  
David S.G. Thomas ◽  
Adrian G. Parker ◽  
Andrew S. Goudie
2003 ◽  
Vol 28 (3) ◽  
pp. 458-472 ◽  
Author(s):  
N. Al-Zahery ◽  
O. Semino ◽  
G. Benuzzi ◽  
C. Magri ◽  
G. Passarino ◽  
...  

2009 ◽  
Vol 197 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Pavel M. Dolukhanov ◽  
Sergei V. Kadurin ◽  
Evgeny P. Larchenkov

2021 ◽  
Author(s):  
Sam Woor ◽  
Julie Durcan ◽  
Ash Parton ◽  
David Thomas

<p>The alluvial/fluvial fan systems of northern Oman act as sensitive geoproxy records of Late Quaternary palaeohydrology and past landscape evolution, offering records of palaeoenvironmental change which cannot be reconstructed from nearby speleothem records alone (Parton et al., 2013). These systems also provide evidence for the important link between the changing abundance of freshwater in the Arabian interior and the dispersal of anatomically modern humans (AMHs) out of Africa (Rosenberg et al., 2012). Limited previous luminescence dating analyses have reported fan activation west of the Hajar during insolation maxima and monsoon intensification throughout the Late Quaternary (Parton et al., 2015). However, there are currently no studies to date which present chronologies for the fan systems to the east of the Hajar Mountains.</p><p>We present the first luminescence based chronology for the fan systems to the east of the Hajar Mountains, providing landform scale data on fan behaviour, including spatial-temporal complexity and variability. This facilitates comparison of the temporal response of fans east and west of the mountains, including differential responses to external forcing. Ages will also be compared with regional palaeoenvironmental and palaeoclimatic records, to inform landscape reconstructions in northern Oman during the late Quaternary.</p><p><strong>References</strong></p><p>Rosenberg, T.M., Preusser, F., Blechschmidt, I., Fleitmann, D., Jagher, R. and Matter, A., 2012. Late Pleistocene palaeolake in the interior of Oman: a potential key area for the dispersal of anatomically modern humans out‐of‐Africa?. Journal of Quaternary Science, 27(1), pp.13-16.</p><p>Parton, A., Farrant, A.R., Leng, M.J., Schwenninger, J.L., Rose, J.I., Uerpmann, H.P. and Parker, A.G., 2013. An early MIS 3 pluvial phase in Southeast Arabia: climatic and archaeological implications. Quaternary International, 300, pp.62-74.</p><p>Parton, A., Farrant, A.R., Leng, M.J., Telfer, M.W., Groucutt, H.S., Petraglia, M.D. and Parker, A.G., 2015. Alluvial fan records from southeast Arabia reveal multiple windows for human dispersal. Geology, 43(4), pp.295-298.</p><p> </p>


2011 ◽  
Vol 30 (11-12) ◽  
pp. 1338-1342 ◽  
Author(s):  
Jordi Agustí ◽  
David Lordkipanidze

2011 ◽  
Vol 76 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Oliver A. C. Atkinson ◽  
David S. G. Thomas ◽  
Andrew S. Goudie ◽  
Richard M. Bailey

AbstractThe northeastern sector of the Rub' al-Khali desert in the eastern United Arab Emirates (UAE) is dominated by large NE–SW trending dune ridges orientated perpendicular to the currently prevailing northwesterly wind regime. In this study, extensive use has been made of artificially exposed sections through these major dune ridges that reveal internal sedimentary structures and allow an intensive, high-resolution sampling programme to be carried out. Here, we present the optical dating results for samples from 7 sections. The results indicate that dune activity and preservation occurred within the periods 7–3 ka, 16–10 ka and 22–20 ka with evidence of earlier preservation during marine oxygen isotope stages MIS 3 and 5, with net accumulation rates in the range 2.2–25 m.ka− 1. In several instances, hiatuses in the preserved record of dune accumulation coincide with stratigraphic bounding surfaces visible in the exposed section profiles with associated truncation of internal sedimentary structures. Caution must be exercised when interpreting such gaps in the recorded accumulation chronologies of these dunes since these may simply constitute phases of low preservation potential rather than phases of low aeolian activity. Other factors such as sediment supply and availability in relation to sea-level dynamics may be significant and are also considered.


ARCTIC ◽  
2017 ◽  
Vol 70 (2) ◽  
pp. 141 ◽  
Author(s):  
Steven R. Holen ◽  
C. Richard Harington ◽  
Kathleen A. Holen

Proboscidean limb bones discovered in Yukon during the 1960s and 1970s exhibit fracture patterns, notches, and bone flakes that are characteristic of percussion. Because of the unique properties of thick cortical proboscidean bone (probably woolly mammoth Mammuthus primigenius or less likely American mastodon Mammut americanum), some researchers hypothesized that these fracture patterns represent intentional hammerstone modification by humans for marrow extraction and bone tool production. As such, these fracture patterns represent evidence of early human dispersal into Eastern Beringia. Radiocarbon dating in the late 1980s indicated that the bone breakage occurred between about 25 000 and 40 000 radiocarbon years before present (14C yr BP). We report 11 new radiocarbon ages using ultra-filtration methods on a different sample of similarly fractured and flaked bones from Yukon. Only two of the radiocarbon ages fall within the expected range of 25 000 to 40 000 14C yr BP. Six other ages are non-finite, with five being more than 49 100 14C yr BP. Three finite ages range between 46 500 and 50 500 14C yr BP with large standard deviations, and these ages may also be non-finite. Two testable hypotheses to explain the observed breakage patterns were developed, the first being that humans broke the bones and the second that some presently unknown geological process broke the bones. Further research is needed to test these two hypotheses.


Sign in / Sign up

Export Citation Format

Share Document