out of africa
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 140)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Vol 11 ◽  
Author(s):  
Jean Pascal Demba Diop ◽  
Andréa Régina Gnilane Sène ◽  
Yacouba Dia ◽  
Seydi Abdoul Ba ◽  
Serigne Saliou Mbacke ◽  
...  

Founder mutations have been reported in BRCA1 and BCRA2 in different ethnic groups with inherited breast cancer. Testing of targeted mutations in specific populations is important for cancer prevention in mutation carriers. In Sub-Saharan Africa, only a few studies have reported specific founder mutations in inherited breast cancer. The pathogenic variant c.815_824dup of BRCA1 has been reported as the most frequent among African American populations with inherited breast cancer and was supposed to have a West African origin. Recent report from Senegal identified this variant in women with inherited breast cancer at the highest frequency ever reported. The variant was linked to a common haplotype confirming its founder effect in West Africa. In this article, we review the mutation history of c.815_824dup and discuss how it spread out of Africa through the transatlantic slave trade.


2022 ◽  
Author(s):  
Jennifer L. Havens ◽  
Sebastien Calvignac-Spencer ◽  
Kevin Merkel ◽  
Sonia Burrel ◽  
David Boutolleau ◽  
...  

Human herpes simplex virus 2 (HSV-2) is a globally ubiquitous, slow evolving DNA virus. HSV-2 genomic diversity can be divided into two main groups: an African lineage and worldwide lineage. Competing hypotheses have been put forth to explain the history of HSV-2. HSV-2 may have originated in Africa and then followed the first wave of human migration out of Africa between 50-100 kya. Alternatively, HSV-2 may have migrated out of Africa via the trans-Atlantic slave trade within the last 150-500 years. The lack of HSV-2 genomes from West and Central Africa, combined with a lack of molecular clock signal in HSV-2 has precluded robust testing of these competing hypotheses. Here, we expand the geographic sampling of HSV-2 genomes in order to resolve the geography and timing of divergence events within HSV-2. We analyze 65 newly sequenced HSV-2 genomes collected from primarily West and Central Africa along with 330 previously published genomes sampled over a 47-year period. Evolutionary simulations confirm that the molecular clock in HSV-2 is too slow to be detected using available data. However, phylogeographic analysis indicates that all biologically plausible evolutionary rates would place the ancestor of the worldwide lineage in East Africa, arguing against the trans-Atlantic slave trade as the source of worldwide diversity. The best supported evolutionary rates between 4.2x10-8 and 5.6x10-8 substitutions/site/year suggest a most recent common ancestor for HSV-2 around 90-120 kya and initial dispersal around 21.9-29.3 kya. These dates suggest HSV-2 left Africa during subsequent waves of human migration out of East Africa.


2021 ◽  
Vol 84 (4) ◽  
pp. 487-502
Author(s):  
Robert B. Eckhardt

Abstract Confidence intervals for estimates of human mtDNA sequence diversity, chimpanzee-human mtDNA sequence divergence, and the time of splitting of the pongid-hominid lineages are presented. Consistent with all the data used in estimating the coalescence time for human mitochondrial lineages to a common ancestral mitochondrion is a range of dates from less than 79,000 years ago to more than 1,139,000 years ago. Consequently, the hypothesis that a migration of modern humans (Homo sapiens) out of Africa in the range of 140,000 to 280,000 years ago resulted in the complete replacement, without genetic interchange, of earlier Eurasian hominid populations (Homo erectus) is but one of several possible interpretations of the mtDNA data. The data are also compatible with the hypothesis, suggested earlier and supported by fossil evidence, of a single, more ancient expansion of the range of Homo erectus from Africa, followed by a gradual transition to Homo sapiens in Europe, Asia, and Africa.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Yuan ◽  
Xumin Ni ◽  
Chang Liu ◽  
Yuwen Pan ◽  
Lian Deng ◽  
...  

AbstractWe developed a method, ArchaicSeeker 2.0, to identify introgressed hominin sequences and model multiple-wave admixture. The new method enabled us to discern two waves of introgression from both Denisovan-like and Neanderthal-like hominins in present-day Eurasian populations and an ancient Siberian individual. We estimated that an early Denisovan-like introgression occurred in Eurasia around 118.8–94.0 thousand years ago (kya). In contrast, we detected only one single episode of Denisovan-like admixture in indigenous peoples eastern to the Wallace-Line. Modeling ancient admixtures suggested an early dispersal of modern humans throughout Asia before the Toba volcanic super-eruption 74 kya, predating the initial peopling of Asia as proposed by the traditional Out-of-Africa model. Survived archaic sequences are involved in various phenotypes including immune and body mass (e.g., ZNF169), cardiovascular and lung function (e.g., HHAT), UV response and carbohydrate metabolism (e.g., HYAL1/HYAL2/HYAL3), while “archaic deserts” are enriched with genes associated with skin development and keratinization.


2021 ◽  
pp. 17-34
Author(s):  
Brian M. Fagan ◽  
Nadia Durrani
Keyword(s):  

2021 ◽  
Author(s):  
Osvaldo Nestor Herrera

About the loss of many genera of large mammals in the last 50 thousand years worldwide, the hypothesis of animal extinction due to overkill arose in the 60s. According to the defenders of this hypothesis, the results of overkill were rapid extinctions or extinctions that occurred after a slow population decline, depending on animal vulnerability. I revisit ethnographic studies with Ju/’hoan hunter-gatherers, made between the 50s and 70s, to inquire about their ways of hunting large animals in a region of the Kalahari in southern Africa. The Ju/’hoan hunters capture a great diversity of animal species but have a preference for large animals, even when they are not easy to hunt, because they contribute to the survival of all the members of each camp. In my opinion, the ethnographic information strengthens the idea of the importance of hunting large animals for the groups of anatomically modern humans that expanded out of Africa after 100 ka ago.


Author(s):  
Francesco Montinaro ◽  
Vasili Pankratov ◽  
Burak Yelmen ◽  
Luca Pagani ◽  
Mayukh Mondal

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Úlfur Árnason

Abstract Background The Out of Africa hypothesis, OOAH, was challenged recently in an extended mtDNA analysis, PPA (Progressive Phylogenetic Analysis), that identified the African human populations as paraphyletic, a finding that contradicted the common OOAH understanding that Hss had originated in Africa and invaded Eurasia from there. The results were consistent with the molecular Out of Eurasia hypothesis, OOEH, and Eurasian palaeontology, a subject that has been largely disregarded in the discussion of OOAH. Results In the present study the mtDNA tree, a phylogeny based on maternal inheritance, was compared to the nuclear DNA tree of the paternally transmitted Y-chromosome haplotypes, Y-DNAs. The comparison showed full phylogenetic coherence between these two separate sets of data. The results were consistent with potentially four translocations of modern humans from Eurasia into Africa, the earliest taking place ≈ 250,000 years before present, YBP. The results were in accordance with the postulates behind OOEH at the same time as they lent no support to the OOAH. Conclusions The conformity between the mtDNA and Y-DNA phylogenies of Hss is consistent with the understanding that Eurasia was the donor and not the receiver in human evolution. The evolutionary problems related to OOAH became similarly exposed by the mtDNA introgression that took place from Hss into Neanderthals ≈ 500,000 YBP, a circumstance that demonstrated the early coexistence of the two lineages in Eurasia.


2021 ◽  
Author(s):  
Norman Owen-Smith

That humans originated from Africa is well-known. However, this is widely regarded as a chance outcome, dependant simply on where our common ancestor shared the land with where the great apes lived. This volume builds on from the 'Out of Africa' theory, and takes the view that it is only in Africa that the evolutionary transitions from a forest-inhabiting frugivore to savanna-dwelling meat-eater could have occurred. This book argues that the ecological circumstances that shaped these transitions are exclusive to Africa. It describes distinctive features of the ecology of Africa, with emphasis on savanna grasslands, and relates them to the evolutionary transitions linking early ape-men to modern humans. It shows how physical features of the continent, especially those derived from plate tectonics, set the foundations. This volume adequately conveys that we are here because of the distinctive features of the ecology of Africa.


Sign in / Sign up

Export Citation Format

Share Document