Late Quaternary chronology of major dune ridge development in the northeast Rub' al-Khali, United Arab Emirates

2011 ◽  
Vol 76 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Oliver A. C. Atkinson ◽  
David S. G. Thomas ◽  
Andrew S. Goudie ◽  
Richard M. Bailey

AbstractThe northeastern sector of the Rub' al-Khali desert in the eastern United Arab Emirates (UAE) is dominated by large NE–SW trending dune ridges orientated perpendicular to the currently prevailing northwesterly wind regime. In this study, extensive use has been made of artificially exposed sections through these major dune ridges that reveal internal sedimentary structures and allow an intensive, high-resolution sampling programme to be carried out. Here, we present the optical dating results for samples from 7 sections. The results indicate that dune activity and preservation occurred within the periods 7–3 ka, 16–10 ka and 22–20 ka with evidence of earlier preservation during marine oxygen isotope stages MIS 3 and 5, with net accumulation rates in the range 2.2–25 m.ka− 1. In several instances, hiatuses in the preserved record of dune accumulation coincide with stratigraphic bounding surfaces visible in the exposed section profiles with associated truncation of internal sedimentary structures. Caution must be exercised when interpreting such gaps in the recorded accumulation chronologies of these dunes since these may simply constitute phases of low preservation potential rather than phases of low aeolian activity. Other factors such as sediment supply and availability in relation to sea-level dynamics may be significant and are also considered.

1999 ◽  
Vol 52 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Peter W. O'Connor ◽  
David S. G. Thomas

Optical luminescence dates for 19 samples from the degraded linear dune field of western Zambia indicate multiple periods of regional dune building for the late Quaternary, 32,000–27,000, 16,000–13,000, 10,000–8000, and 5000–4000 yr ago. These dates show that the last glacial maximum was not the only time when dune construction, commonly linked to marked aridity, occurred in central-southern Africa during the late Quaternary. Whereas rainfall significantly less than today's ca. 1400 mm yr−1 is a prerequisite for dune construction in the area, adequate sediment supply also determines dune construction and preservation, so that dune building cannot be simply and singularly linked to marked aridity. The Zambezi River system is proposed as an important source of dune sediments, with the nature of linear dune activity explaining why stacked sediments preserve several phases of dune formation. Chronologies of dune construction in western Zimbabwe and the southwest Kalahari are in broad agreement with our Zambian chronology and support a model of rainfall shifts along a SW–NE gradient, with some notable disparities. These are probably a function of interregional sediment supply differences, the number of samples used to delimit constructional periods, and the multicausal nature of forcing mechanisms.


Author(s):  
J. Knight

Abstract Slope and lowland sediment systems throughout southern Africa are dominated by the presence of colluvium with interbedded palaeosols and hardground duricrusts. These sediments correspond to phases of land surface instability and stability, respectively, during the late Quaternary. This study examines the stratigraphy and environmental interpretation of slope sediment records from specific sites in southern Africa for the period of marine isotope stages (MIS) 6 to 1 (~191 ka to present), informed by theoretical ideas of the dynamics of slope systems including sediment supply and accommodation space. Based on this analysis, phases of land surface instability and stability for the period MIS 6 to 1 are identified. The spatial and temporal patterns of land surface conditions are not a simple reflection of climate forcing, but rather reflect the workings of slope systems in response to climate in addition to the role of geologic, edaphic and ecological factors that operate within catchment-scale sediment systems. Considering these systems dynamics can yield a better understanding of the usefulness and limitations of slope sediment stratigraphies.


2008 ◽  
Vol 45 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Thian Hundert ◽  
David J.W. Piper

The sedimentary record on continental slopes has the potential to preserve a record of glacial retreat on the adjacent continental shelf. The glacial history of the southwestern part of the Scotian Shelf is poorly known. Air-gun and high-resolution sparker profiles and numerous sediment cores up to 10 m long have been used to determine the character of sedimentation on the southwestern Scotian Slope since the last glacial maximum (LGM). Seismic-reflection profiles show that glacial till was deposited at shallow depths on the upper continental slope, and correlation to dated piston cores farther downslope show that this till dates from the LGM. Slope sedimentation at this time was dominated by local ice and deposited as plume fallout and turbidites. Progressively increasing importance of red-brown sediment derived from glacial supply to Laurentian Channel indicates retreat of ice from the shelf edge and diminishing supply of proglacial sediment from the calving embayment in the mid-Scotian Shelf. With the termination of distal proglacial sediment supply, the sedimentation rate diminished rapidly and hemipelagic sedimentation prevailed through the Holocene.


The Holocene ◽  
2006 ◽  
Vol 16 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Stephen A. Wolfe ◽  
Jeff Ollerhead ◽  
David J. Huntley ◽  
Olav B. Lian

Past aeolian activity was reconstructed at four dunefields in the prairie parkland and boreal forest of central Saskatchewan to elucidate landscape response to environmental change. Optical ages from stabilized dunes in the boreal transition ecoregion indicate two episodes of activity. The first, at about 11 ka, corresponds to a period of early-Holocene parkland and grassland cover following deglaciation and drainage after about 13.0 ka, and brief establishment of boreal forest. The second, between about 7.5 and 5 ka, corresponds to a period of mid-Holocene parkland-grassland cover. Optical ages from dunefields in the prairie parkland primarily record mid-Holocene activity, between about 7.5 and 4.7 ka, corresponding to a period of grassland cover, with some reworking continuing into the late Holocene. Although this area was deglaciated by about 13.5 ka, there is no evidence of early-Holocene dune activity, suggesting that mid-Holocene activity may have reworked earlier deposits here. Consequently, much of the morphology and stratigraphy observed in these dunefields are associated with mid-Holocene activity, likely associated with increased aridity and reduced vegetation cover at that time. This study provides the most northerly evidence of mid-Holocene dune reactivation on the Great Plains, lending support to the assertion that aeolian activity was widespread at that time.


2002 ◽  
Vol 114 (9) ◽  
pp. 1131-1142 ◽  
Author(s):  
Gregory S. Hancock ◽  
Robert S. Anderson

Abstract Many river systems in western North America retain a fluvial strath-terrace rec ord of discontinuous downcutting into bedrock through the Quaternary. Their importance lies in their use to interpret climatic events in the headwaters and to determine long-term incision rates. Terrace formation has been ascribed to changes in sediment supply and/or water discharge produced by late Quaternary climatic fluctuations. We use a one-dimensional channel- evolution model to explore whether temporal variations in sediment and water discharge can generate terrace sequences. The model includes sediment transport, vertical bedrock erosion limited by alluvial cover, and lateral valley-wall erosion. We set limits on our modeling by using data collected from the terraced Wind River basin. Two types of experiments were performed: constant- period sinusoidal input histories and variable-period inputs scaled by the marine δ18O rec ord. Our simulations indicate that strath-terrace formation requires input variability that produces a changing ratio of vertical to lateral erosion rates. Straths are cut when the channel floor is protected from erosion by sediment and are abandoned—and terraces formed—when incision can resume following sediment-cover thinning. High sediment supply promotes wide valley floors that are abandoned as sediment supply decreases. In contrast, wide valleys are promoted by low effective water discharge and are abandoned as discharge increases. Widening of the valley floors that become terraces occurs over many thousands of years. The transition from valley widening to downcutting and terrace creation occurs in response to subtle input changes affecting local divergence of sediment-transport capacity. Formation of terraces lags by several thousand years the input changes that cause their formation. Our results suggest that use of terrace ages to set limits on the timing of a specific event must be done with the knowledge that the system can take thousands of years to respond to a perturbation. The incision rate calculated in the field from the lowest terrace in these systems will likely be higher than the rate calculated by using older terraces, because the most recent fluvial response in the field is commonly downcutting associated with declining sediment input since the Last Glacial Maximum. This apparent increase in incision rates is observed in many river systems and should not necessarily be interpreted as a response to an increase in rock-uplift rate.


2009 ◽  
Vol 71 (3) ◽  
pp. 426-436 ◽  
Author(s):  
Ralf Hesse

AbstractAeolian dunes are widely used to reconstruct paleoenvironmental conditions. However, terminal dune fields (ergs) in the coastal desert of southern Peru – where information regarding Quaternary paleoenvironmental conditions is very limited – have until now not been used for paleoenvironmental reconstructions and the time depth of their accumulation is unknown. Here, different estimates are derived to constrain the time depth recorded in the Dunas Pampa Blanca, a terminal dune field in coastal southern Peru. Dune field age is calculated using the volume of the Dunas Pampa Blanca and (i) recent aeolian transport rate in migrating transverse dunes feeding the Dunas Pampa Blanca (derived from digital processing of sequential Landsat and Quickbird images) and (ii) limitations posed by recent fluvial sediment supply to the source of aeolian transport. The resulting maximum age estimate of 70 ± 8 ka (from aeolian transport) compares with a minimum age estimate of 4–75 ka (from sediment supply). However, a minimum age estimate of 110–450 ka is deduced from the tectonic and topographic evolution of the region. This discrepancy contradicts the hypothesis of late Quaternary stability in the Peruvian coastal desert and indicates that recent conditions of aeolian sediment supply and transport are not representative for the late Quaternary.


Sign in / Sign up

Export Citation Format

Share Document