scholarly journals High resolution reconstruction of modern charcoal production kilns: An integrated approach combining dendrochronology, micromorphology and anthracology in the French Pyrenees

Author(s):  
Léonel Fouédjeu ◽  
Mélanie Saulnier ◽  
Mathieu Lejay ◽  
Martin Dušátko ◽  
Vincent Labbas ◽  
...  



2021 ◽  
Author(s):  
Yiwei Liu ◽  
Yibo Wang ◽  
Qiuya Sun ◽  
Hao Chen ◽  
Hongpeng Qin ◽  
...  




1992 ◽  
Vol 6 ◽  
pp. 27-27
Author(s):  
William A. Berggren

The passage of time cannot be measured in vacuo. Recognition of the time-continuum can only be made by reference to physical and/or biotic events in the geohistorical (rock) record. Inasmuch as these events in the rock record must be measurable in some fashion, they must be related to an objective and retrievable reference standard. Thus the “holy trinity” of litho-bio-and chronostratigraphy can serve as the material (concrete) evidence for the totally conceptual geochronologic units which have no objective existence apart from the natural world.Geochronology is defined here as the conceptual division of continuous time as measured (geochronometry) by the progression in an ordinal series of events. This is best achieved by an approach which integrates four independent data sets: magnetostratigraphy, sea-floor spreading magnetic anomalies, biostratigraphy and isotopic dating. This integrated approach has resulted, until recently, in an ordinal framework capable of measuring the passage of time with greater resolution (precision), though perhaps with less accuracy, than a radiometric approach alone. Recent improvements in the field of isotopic dating-the single crystal laser fusion (SCLF) 40Ar/39Ar technique - now render possible dates with analytical precision of <1% in the early to mid-Cenozoic. The implication for high resolution correlation is clear: until recently biostratigraphy and biochronology have been routinely able to achieve a degree of chronologic resolution considerably higher than that of isotopic dating with its inherently large analytical errors. Laser fusion dating is now capable of providing numerical values for parts of the stratigraphic record with comparable or greater precision than classical biostratigraphy and biochronology. It is clear, now more than ever, that an accurate and precise biostratigraphy is important as we continue to improve upon the geochronologic framework which underlies attempts at high resolution correlation between marginal, platform and deep-sea stratigraphies.A review of the philosophic and methodologic approach of various Cenozoic geochronologic schemes and their strengths and weaknesses will be presented together with a brief discussion of a new, and as yet unpublished, revision to Cenozoic geochronology. Recent assessment of sea floor anomaly patterns indicate a need to stretch the spacing of the interval between anomalies 3A to 5 resulting in an age increase of about 0.5my for Anomaly 5 from 8.92–10.42Ma (BKVC85) to 9.6–11.0Ma; the revised age estimates are consistent with those of McDougall (1984) based on radioisotopic dating of Icelandic basalts. No other major (age) revisions to Neogene chronology are contemplated. However, discrete adjustments are required in the late Neogene as magnetostratigraphic boundaries and biostratigraphic datum events are (re)correlated to the recently proposed astronomically calibrated orbital time scale of Hilgen and Langereis. In the Paleogene the major change is centered on readjustment of the Eocene which, while retaining its relative duration of ~21my, has younger (~34Ma) and older (~54.5Ma) limits, respectively, not unlike some estimates made over 20 years ago. Emphasis on implications for Paleogene geochronology will be stressed with particular reference to events around the Paleocene/Eocene boundary and the integration of correlative NW European and Gulf and Atlantic Coastal Plain stratigraphies in a sequence stratigraphic framework. The continuing efforts being devoted to revising Cenozoic geochronology have as their overiding goal the simple yet scientifically elusive objective of “getting it right”.



2020 ◽  
Vol 375 (1794) ◽  
pp. 20190128 ◽  
Author(s):  
C. Soto-Navarro ◽  
C. Ravilious ◽  
A. Arnell ◽  
X. de Lamo ◽  
M. Harfoot ◽  
...  

Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major challenge for understanding, mapping and communicating where and how biodiversity benefits coincide with climate benefits. A new integrated approach to biodiversity is therefore needed. Here, we (a) present a new high-resolution map of global above- and below-ground carbon stored in biomass and soil, (b) quantify biodiversity values using two complementary indices (BIp and BIr) representing proactive and reactive approaches to conservation, and (c) examine patterns of carbon–biodiversity overlap by identifying 'hotspots' (20% highest values for both aspects). Our indices integrate local diversity and ecosystem intactness, as well as regional ecosystem intactness across the broader area supporting a similar natural assemblage of species to the location of interest. The western Amazon Basin, Central Africa and Southeast Asia capture the last strongholds of highest local biodiversity and ecosystem intactness worldwide, while the last refuges for unique biological communities whose habitats have been greatly reduced are mostly found in the tropical Andes and central Sundaland. There is 38 and 5% overlap in carbon and biodiversity hotspots, for proactive and reactive conservation, respectively. Alarmingly, only around 12 and 21% of these proactive and reactive hotspot areas, respectively, are formally protected. This highlights that a coupled approach is urgently needed to help achieve both climate and biodiversity global targets. This would involve (1) restoring and conserving unprotected, degraded ecosystems, particularly in the Neotropics and Indomalaya, and (2) retaining the remaining strongholds of intactness. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.



2019 ◽  
Vol 30 (4) ◽  
pp. 795-806
Author(s):  
Félix Labrie-Larrivée ◽  
Denis Laurendeau ◽  
Jean-François Lalonde


2012 ◽  
Vol 29 (10) ◽  
pp. 2080 ◽  
Author(s):  
Sunder Ram Krishnan ◽  
Chandra Sekhar Seelamantula ◽  
Arno Bouwens ◽  
Marcel Leutenegger ◽  
Theo Lasser


Sign in / Sign up

Export Citation Format

Share Document