A tectono-geomorphological perspective of micro-earthquake swarm activity prone areas around Bhavnagar and Jamnagar in Saurashtra, western India

Author(s):  
Naimisha Vanik ◽  
D.M. Maurya ◽  
Mohamedharoon Shaikh ◽  
Akash Padmalal ◽  
Prabhuti Tiwari ◽  
...  
2016 ◽  
Vol 43 (3) ◽  
pp. 1092-1099 ◽  
Author(s):  
T. H. W. Goebel ◽  
S. M. Hosseini ◽  
F. Cappa ◽  
E. Hauksson ◽  
J. P. Ampuero ◽  
...  

2021 ◽  
Author(s):  
Kazuki Machida ◽  
Hiroyuki Nagahama ◽  
Jun Muto

<p>Earthquakes occur when the fault stress accumulates to the critical level. External forces such as tidal forces may contributes to the triggering of earthquakes reaching the critical state. For example, in the case of 2011 Tohoku Earthquake, it is reported that there is a correlation between tidal forces and the earthquakes prior to the mainshock. Earthquakes with smaller magnitude are also affected by tidal forces and expected to show correlation with tidal forces.</p><p>Tidal triggering of non-volcanic seismic swarm has not been well documented. So, we choose the Wakayama Prefecture as a targeting region. The cause of the earthquakes occurring in the region is considered to be the presence of the water below the seismogenic depth. The swarm activity continues from 1980s. We analyzed the shallow earthquakes in the northern part of Wakayama Prefecture from 1998 to 2016. We used statistical method called Schuster test to analyze correlation between earthquakes and tidal stress.</p><p>The result of the analysis shows that the earthquakes have a correlation with tidal forces which have the periodicity near the half of the lunar day and the amplitude of the seismicity-rate variation is about 16% of the average earthquake frequency. Correlation between the earthquakes and tidal forces is stronger at the periods when larger number of earthquakes occur. From tidal stress calculation, it is found that both solid tide and oceanic tide are important at this region. This study confirms that most of the earthquakes larger than M<sub>w</sub> 4 in the region occur in the rising period of tidal normal stress or just after the maximum of tidal normal stress. Therefore, tidal observation gives information about the criticality of rocks and temporal heterogeneity of the earthquake occurrence.</p>


2010 ◽  
Vol 2 (1) ◽  
pp. 145-160
Author(s):  
P. Kolář

Abstract. There are long time lasting speculations about electro-magnetic emission phenomena (hereafter EME) connected with seismic activity. In the present work we study such relations in West Bohemia region during 2008 earthquake swarm. After brief characterization of the seismic region, we describe recording method and data analysis. We did not observe any direct link between EME and seismic events, however statistical analysis indicates that it could be some increase of EME activity in time 60 to 30 min before an event on periods 17–14 min, some gap in EME activity approximately 2 h after the event and a maximum 4 h after the events (note, that this result qualitatively correspond with observations from other seismic regions). Also global decrease of EME activity with the decay of the swarm activity was observed. However due to incomplete EME data and short time of observation these results must be understand as indication of possible correlation rather than reliable relation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joël Ruch ◽  
Derek Keir ◽  
Luigi Passarelli ◽  
Domenico Di Giacomo ◽  
Ghebrebrhan Ogubazghi ◽  
...  

Earthquake swarms occur sporadically at divergent plate boundaries but their recurrence over multiple decades and relation to magmatic spreading activity remain poorly understood. Here we study more than 100 earthquake swarms over a 60-year period in the southern Red Sea, Afar, and Gulf of Aden region. We first compiled an earthquake-swarm catalogue by integrating reexamined global and local earthquake catalogues from 1960 to 2017. This yielded 134 earthquake swarms that mainly cluster in 19 different areas in the study region, showing that in most cases swarms recur every few decades in the same area. The swarms exhibit a range of earthquake magnitudes and often include multiple M3 to M5 events with some swarms having occasional larger earthquakes over M6, primarily in southern Afar. Many of the earthquake swarms were clearly associated with rifting events, consisting of magmatic intrusions, surface faulting, and in some cases volcanic eruptions. Together, the swarms suggest that extension at these divergent plate boundaries occurs episodically along <100 km long segments, some of which were previously unrecognized. Within the study region, the Gulf of Aden shows the most frequent swarm activity, followed by Afar and then the southern Red Sea. The results show that the three areas were subject to an increase of earthquake-swarm activity from 2003 to 2013 in the form of three rifting episodes and at least seven volcanic eruptions. We interpret that the most likely controls on temporal variations in earthquake swarm activity are either temporal variations in magma supply, or rifting-induced stress change that trigger clusters of swarms.


2007 ◽  
Vol 50 (4) ◽  
pp. 938-946 ◽  
Author(s):  
Jian-Ping WU ◽  
Yue-Hong MING ◽  
Heng-Rong ZHANG ◽  
Guo-Ming LIU ◽  
Li-Hua FANG ◽  
...  

Author(s):  
Euan G. C. Smith ◽  
Brad J. Scott ◽  
John H. Latter

The continual earthquake swarm activity in the Waiotapu-Waikite Valley area that commenced in April 1982, reached a climax on 14 December 1983 with the occurrence of a magnitude 5.1 shock at shallow depth, on or close to the Ngapouri fault, near Waiotapu. It was the largest event in this area for more than 40 years. Felt intensities reached MM VII and possibly MM VIII in the epicentral region and resulted in claims for $29,000 worth of damage. Although inadequate for the determination of a focal mechanism, first P-wave motions indicate that the earthquake produced east-west extension. On the assumption that the shock occurred on the Ngapouri fault (strike N55°E, northwest side down), this implies sinistral movement with a lesser dip slip component. Geodetic data are consistent with extention at N110°E in the region, although the magnitude of the strain is technically too small to be statistically significant.


Sign in / Sign up

Export Citation Format

Share Document