Timing and drivers of local to regional scale land-cover changes in the hemiboreal forest zone during the Holocene: A pollen-based study from South Estonia

2022 ◽  
Vol 277 ◽  
pp. 107351
Author(s):  
Anneli Poska ◽  
Vivika Väli ◽  
Jüri Vassiljev ◽  
Tiiu Alliksaar ◽  
Leili Saarse
Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rimal Abeed ◽  
Cathy Clerbaux ◽  
Lieven Clarisse ◽  
Martin Van Damme ◽  
Pierre-François Coheur ◽  
...  

The agricultural sector in Syria was heavily affected by the civil war that started in 2011. We investigate the war’s impact on the country’s atmospheric ammonia (NH3) from 2008 to 2019, using measurements from the infrared atmospheric sounding interferometer instrument on board the Metop satellites. We examine the changes in NH3 close to a fertilizer industry, whose activities were suspended due to conflict-related events. We also explore the effect of war-induced land use/land cover changes on agriculture-emitted ammonia in north-east Syria that has witnessed battles between different groups. The interpretation of the changes in NH3 is supported by different datasets: visible satellite imagery to assess the effect on industrial activity, reanalysis data from the European center for medium-range weather forecasts to look at the effect of meteorology (temperature, wind speed, and precipitation), and land cover and burned area products from the moderate resolution imaging spectroradiometer (MODIS) to examine land use/land cover changes and fire events during the study period. We show that the NH3 columns are directly affected by the war. Periods of intense conflict are reflected in lower values over the industry reaching –17%, –47%, and –32% in 2013, 2014, and 2016, respectively, compared to the [2008–2012] average, and a decrease reaching –14% and –15% in the croplands’ area in northeast Syria during 2017 and 2018 (compared to 2011), respectively. Toward the end of the control of Islamic State in Iraq and Syria, an increase in atmospheric NH3 was accompanied by an increase in croplands’ area that reached up to +35% in 2019 as compared to prewar (2011). This study shows the relevance of remote-sensing data of atmospheric composition in studying societal changes at a local and regional scale.


Author(s):  
Andrew Goudie

The term “Anthropocene” has Greek roots (anthropo meaning “human” and –cene meaning “new”). It is a new term for an older concept, and a great deal of argument concerns how it can be differentiated, if at all, in terms of a boundary with the Holocene. It is agreed, however, that the human impact on the environment has been increasing hugely in the last few centuries and that humans are now a very potent geological force. It is also apparent that in coming centuries a combination of population increases, land cover changes, climatic changes, and new technologies will increase this force still further.


2020 ◽  
Vol 12 (23) ◽  
pp. 3864
Author(s):  
Ana Carolina M. Pessôa ◽  
Liana O. Anderson ◽  
Nathália S. Carvalho ◽  
Wesley A. Campanharo ◽  
Celso H. L. Silva Junior ◽  
...  

Carbon (C) emissions from forest fires in the Amazon during extreme droughts may correspond to more than half of the global emissions resulting from land cover changes. Despite their relevant contribution, forest fire-related C emissions are not directly accounted for within national-level inventories or carbon budgets. A fundamental condition for quantifying these emissions is to have a reliable estimation of the extent and location of land cover types affected by fires. Here, we evaluated the relative performance of four burned area products (TREES, MCD64A1 c6, GABAM, and Fire_cci v5.0), contrasting their estimates of total burned area, and their influence on the fire-related C emissions in the Amazon biome for the year 2015. In addition, we distinguished the burned areas occurring in forests from non-forest areas. The four products presented great divergence in the total burned area and, consequently, total related C emissions. Globally, the TREES product detected the largest amount of burned area (35,559 km2), and consequently it presented the largest estimate of committed carbon emission (45 Tg), followed by MCD64A1, with only 3% less burned area detected, GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of Fire_cci may result in an underestimation of 29.54 ± 3.36 Tg of C emissions in relation to the TREES product. The same pattern was found for non-forest areas. Considering only forest burned areas, GABAM was the product that detected the largest area (8994 km2), followed by TREES (7985 km2), MCD64A1 (7181 km2) and Fire_cci (1745 km2). Regionally, Fire_cci detected 98% less burned area in Acre state in southwest Amazonia than TREES, and approximately 160 times less burned area in forests than GABAM. Thus, we show that global products used interchangeably on a regional scale could significantly underestimate the impacts caused by fire and, consequently, their related carbon emissions.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Syed Atif Bokhari ◽  
Zafeer Saqib ◽  
Amjad Ali ◽  
Arif Mahmud ◽  
Nadia Akhtar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document