Integrating cullin2-RING E3 ligase as a potential biomarker for glioblastoma multiforme prognosis and radiosensitivity profiling

2021 ◽  
Vol 154 ◽  
pp. 36-44
Author(s):  
Shuhua Zheng ◽  
Yilin Wu ◽  
Zhenhao Li
2020 ◽  
Vol 2 (1) ◽  
pp. 009-010
Author(s):  
Shuhua Zheng ◽  
Yilin Wu

This a commentary to the article titled "Integrating cullin2-RING E3 ligase as a potential biomarker for glioblastoma multiforme prognosis and radiosensitivity profiling" recently published in the journal Radiotherapy and Oncology (https://doi.org/10.1016/j.radonc.2020.09.005). 


Science ◽  
2019 ◽  
Vol 365 (6448) ◽  
pp. eaaw4912 ◽  
Author(s):  
Richard T. Timms ◽  
Zhiqian Zhang ◽  
David Y. Rhee ◽  
J. Wade Harper ◽  
Itay Koren ◽  
...  

The N-terminal residue influences protein stability through N-degron pathways. We used stability profiling of the human N-terminome to uncover multiple additional features of N-degron pathways. In addition to uncovering extended specificities of UBR E3 ligases, we characterized two related Cullin-RING E3 ligase complexes, Cul2ZYG11B and Cul2ZER1, that act redundantly to target N-terminal glycine. N-terminal glycine degrons are depleted at native N-termini but strongly enriched at caspase cleavage sites, suggesting roles for the substrate adaptors ZYG11B and ZER1 in protein degradation during apoptosis. Furthermore, ZYG11B and ZER1 were found to participate in the quality control of N-myristoylated proteins, in which N-terminal glycine degrons are conditionally exposed after a failure of N-myristoylation. Thus, an additional N-degron pathway specific for glycine regulates the stability of metazoan proteomes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan J. Lumpkin ◽  
Richard W. Baker ◽  
Andres E. Leschziner ◽  
Elizabeth A. Komives

Sign in / Sign up

Export Citation Format

Share Document