Prediction of dose rates around the interim spent fuel storage facility

2021 ◽  
Vol 180 ◽  
pp. 109171
Author(s):  
Mosebetsi.J. Leotlela ◽  
Nokahle.D. Hadebe ◽  
Ivo. Petr ◽  
Abraham. Sunil
2021 ◽  
Author(s):  
Wen Yang ◽  
Xing Li ◽  
Jinrong Qiu ◽  
Lun Zhou

Abstract With the rapid development of nuclear energy, spent fuel will accumulate in large quantities. Spent fuel is generally cooled and placed in a storage pool, and then transported to a reprocessing plant at an appropriate time. Because spent fuel is content with a high level of radiation, spent fuel storage and transportation safety play important roles in the nuclear safety. Radiation dose safety are checked and validated using source analysis and Monte Carlo method to establish a radiation dose rate calculation model for PWR spent fuel storage pool and transport container. The calculation results show that the neutron and photon dose rates decrease exponentially with increase of water level under normal condition of storage pool. The attenuation multiples of neutron and photon dose rates are 4.64 and 1.59, respectively. According to radiation dose levels in different water height situations, spent fuel pool under loss of coolant accident can be divides into five workplaces. They are supervision zone, regular zone, intermittent zone, restricted zone and radiation zone. Under normal condition of transport container, the dose rates at the surface of the container and at a distance of 1 m from the surface are 0.1759 mSv/h and 0.0732 mSv/h, respectively. The dose rates decrease with the increasing radius of break accident, and dose rate at the surface of the transport container is 0.278 mSv/h when the break radius is 20 cm. Transport container conforms to the radiation safety standards of International Atomic Energy Agency (IAEA). This study can provide some reference for radiation safety analysis of spent fuel storage and transportation.


Author(s):  
Liming Huang ◽  
Shouhai Yang ◽  
Jie Liu

Radiation safety is an important part of safety assessment of spent fuel dry storage technology. This paper describes the radiation protection design of PWR spent fuel dry storage facility for radiation safety completed by China General Nuclear Power Corporation. Considering the special site conditions, Monte Carlo method is used to complete the precise calculation of the three-dimensional radiation dose field in the spent fuel storage building. Through the spent fuel storage module and the storage building with shielding function, radiation shielding design is completed to meet China’s regulatory requirements, which ensures radiation safety for workers and the public during the transport and storage of spent fuel. It will provide a reference for construction of spent fuel dry storage facility of CPR1000 and HPR1000.


Author(s):  
Jinhua Wang ◽  
Bing Wang ◽  
Bin Wu ◽  
Yue Li

There are more than 400 reactors in operation to generate electricity in the world, most of them are pressurized water reactors and boiling water reactors, which generate great amount of spent fuel every year. The residual heat power of the spent fuel just discharged from the reactor core is high, it is required to store the spent fuel in the spent fuel storage pool at the first 5 years after discharged from the reactor, and then the spent fuel could be moved to the interim storage facility for long term storage, or be moved to the factory for final treatment. In the accident of the Fukushima in 2011, the spent fuel pool ruptured, which led to the loss of coolant accident, it was very danger to the spent fuel assemblies stored in the pool. On the other hand, the spent fuel stored in the dry storage facility was safe in the whole process of earthquake and tsunami, which proved inherent safety of the spent fuel dry storage facility. In china, the High Temperature gas cooled Reactor (HTR) is developing for a long time in support of the government. At the first stage, HTR-10 with 10MW thermal power was designed and constructed in the Institute of Nuclear Energy Technology (INET) of Tsinghua University, and then the High Temperature Reactor-Pebble bed Modules (HTR-PM) is designed to meet the commercial application, which is in constructing process in Shandong Province. HTR has some features of the generation four nuclear power plant, including inherent safety, avoiding nuclear proliferation, could generate high temperature industrial heat, and so on. Spherical fuel elements would be used as fuel in HTR-PM, there are many coating fuel particles separated in the fuel element. As the fuel is different for the HTR and the PWR, the fuel element would be discharged into the appropriate spent fuel canister, and the canister would be stored in the appropriate interim storage facility. As the residual power density is very low for the spent fuel of HTR, the spent fuel canister could be cooled with air ventilation without water cooling process. The advantage of air cooling mode is that it is no need to consider the residual heat removal depravation due to loss of coolant accident, so as to increase the inherent safety of the spent fuel storage system. This paper introduced the design, arrangement and safety characteristics of the spent fuel storage well of HTR-PM. The spent fuel storage wells have enough capacity to hold the total spent fuel canisters for the HTR-PM. The spent fuel storage facility includes several storage wells, cold intake cabin, hot air discharge cabin, heat shield cylinders, well lids and so on. The cold intake cabin links the inlets of all the wells, which would be used to import cold air to every well. The hot air discharge cabin links the outlets of all the wells, which would be used to gather heated air discharged from every well, the heated air would be discharged to the atmosphere through the ventilating pipe at the top of the hot air cabin. The design of the spent fuel storage well and the ventilating pipe could discharge the residual heat of the spent fuel canisters in the storage wells, which could ensure the operating safety of the spent fuel storage system.


Author(s):  
Tanase Dobre ◽  
Cristina Ciuculescu ◽  
Anicuta Stoica ◽  
Marta Stroescu

2011 ◽  
Vol 241 (3) ◽  
pp. 723-730 ◽  
Author(s):  
Woo-Seok Choi ◽  
Jae-Eon Jeon ◽  
Ki-Seog Seo ◽  
Jung-Eun Park ◽  
Gyou-Soo You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document