scholarly journals Non-invasive prenatal testing using massively parallel sequencing of maternal plasma DNA: from molecular karyotyping to fetal whole-genome sequencing

2013 ◽  
Vol 27 (6) ◽  
pp. 593-598 ◽  
Author(s):  
Y.M. Dennis Lo
Open Biology ◽  
2012 ◽  
Vol 2 (6) ◽  
pp. 120086 ◽  
Author(s):  
Yuk Ming Dennis Lo

The presence of foetal DNA in the plasma of pregnant women has opened up new possibilities for non-invasive prenatal diagnosis. The use of circulating foetal DNA for the non-invasive prenatal detection of foetal chromosomal aneuploidies is challenging as foetal DNA represents a minor fraction of maternal plasma DNA. In 2007, it was shown that single molecule counting methods would allow the detection of the presence of a trisomic foetus, as long as enough molecules were counted. With the advent of massively parallel sequencing, millions or billions of DNA molecules can be readily counted. Using massively parallel sequencing, foetal trisomies 21, 13 and 18 have been detected from maternal plasma. Recently, large-scale clinical studies have validated the robustness of this approach for the prenatal detection of foetal chromosomal aneuploidies. A proof-of-concept study has also shown that a genome-wide genetic and mutational map of a foetus can be constructed from the maternal plasma DNA sequencing data. These developments suggest that the analysis of foetal DNA in maternal plasma would play an increasingly important role in future obstetrics practice. It is thus a priority that the ethical, social and legal issues regarding this technology be systematically studied.


2012 ◽  
Vol 58 (10) ◽  
pp. 1467-1475 ◽  
Author(s):  
Kwan-Wood G Lam ◽  
Peiyong Jiang ◽  
Gary J W Liao ◽  
K C Allen Chan ◽  
Tak Y Leung ◽  
...  

Abstract BACKGROUND A genomewide genetic and mutational profile of a fetus was recently determined via deep sequencing of maternal plasma DNA. This technology could have important applications for noninvasive prenatal diagnosis (NIPD) of many monogenic diseases. Relative haplotype dosage (RHDO) analysis, a core step of this procedure, would allow one to elucidate the maternally inherited half of the fetal genome. For clinical applications, the cost and complexity of data analysis might be reduced via targeted application of this approach to selected genomic regions containing disease-causing genes. There is thus a need to explore the feasibility of performing RHDO analysis in a targeted manner. METHODS We performed target enrichment by using solution-phase hybridization followed by massively parallel sequencing of the β-globin gene region in 2 families undergoing prenatal diagnosis for β-thalassemia. We used digital PCR strategies to physically deduce parental haplotypes. Finally, we performed RHDO analysis with target-enriched sequencing data and parental haplotypes to reveal the β-thalassemic status for the fetuses. RESULTS A mean sequencing depth of 206-fold was achieved in the β-globin gene region by targeted sequencing of maternal plasma DNA. RHDO analysis was successful for the sequencing data obtained from the target-enriched samples, including a region in one of the families in which the parents had similar haplotype structures. Data analysis revealed that both fetuses were heterozygous carriers of β-thalassemia. CONCLUSIONS Targeted sequencing of maternal plasma DNA for NIPD of monogenic diseases is feasible.


2010 ◽  
Vol 42 (11) ◽  
pp. 931-936 ◽  
Author(s):  
Akihiro Fujimoto ◽  
Hidewaki Nakagawa ◽  
Naoya Hosono ◽  
Kaoru Nakano ◽  
Tetsuo Abe ◽  
...  

2012 ◽  
Vol 36 (5) ◽  
Author(s):  
Amy Swanson ◽  
Christin Coffeen ◽  
Amy J. Sehnert

AbstractAfter decades of research, non-invasive prenatal testing (NIPT) using maternal blood to determine fetal chromosome status has found its way from the research laboratory into clinical practice, triggering a long-awaited paradigm shift in prenatal care. A variety of methods using sequencing of maternal cell-free DNA (cfDNA) have now been studied, primarily demonstrating their ability to detect the most common fetal aneuploidy, trisomy 21 (T21). The focus of this article is on massively parallel sequencing (MPS) with optimized sequence tag mapping and chromosome quantification, which accurately detects T21 as well as multiple other aneuploidies across the genome. The power of this technique resides in its high precision and reduction of variation within and between sequencing runs. Using MPS, classification of aneuploidy status for a given sample can be reliably assigned from the genetic information alone without the need to factor in other maternal pre-test risk or other clinical variables. Performance of this method has been prospectively demonstrated in a rigorous, blinded, multi-center study in the United States. The findings suggest that MPS can be incorporated into existing prenatal screening algorithms to reduce unnecessary invasive procedures. This technology and key considerations for clinical implementation are discussed.


Sign in / Sign up

Export Citation Format

Share Document