molecular karyotyping
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 39)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 31 (06) ◽  
pp. 472-481
Author(s):  
Charlotte Bendixen ◽  
Erwin Brosens ◽  
Wendy Kay Chung

AbstractCongenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.


2021 ◽  
Author(s):  
Daniela Quezada Martinez ◽  
Jun Zou ◽  
Wenshang Zhang ◽  
Jinling Meng ◽  
Jacqueline Batley ◽  
...  

In the Brassica genus we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lines is still unknown. We crossed Brassica hexaploids resulting from different species combinations to produce five F1 hybrids, and analyzed the karyotypes of the parents and the F1 hybrids, as well as allele segregation in a resulting test-cross population via molecular karyotyping using SNP array genotyping. Although some genomic regions were found to be more likely to be duplicated, deleted or rearranged, a consensus pattern was not shared between genotypes. Brassica hexaploids had a high tolerance for fixed structural rearrangements, but which rearrangements occur and become fixed over many generations does not seem to show either strong reproducibility or to indicate selection for stability. On average, we observed 10 de novo chromosome rearrangements contributed almost equally from both parents to the F1 hybrids. At the same time, the F1 hybrid meiosis produced on average 8.6 new rearrangements. Hence, the increased heterozygosity in the F1 hybrid did not significantly improve genome stability in our hexaploid hybrids, and might have had the opposite effect. However, hybridization between lineages was readily achieved and may be exploited for future genetics and breeding purposes.


2021 ◽  
Vol 22 (21) ◽  
pp. 11424
Author(s):  
Bo Liu ◽  
Sui Wang ◽  
Xiaoyan Tao ◽  
Caixia Liu ◽  
Guanzheng Qu ◽  
...  

The molecular karyotype could represent the basic genetic make-up in a cell nucleus of an organism or species. A doubled haploid (DH) is a genotype formed from the chromosome doubling of haploid cells. In the present study, molecular karyotype analysis of the poplar hybrid Populus simonii × P. nigra (P. xiaohei) and the derived doubled haploids was carried out with labeled telomeres, rDNA, and two newly repetitive sequences as probes by fluorescence in situ hybridization (FISH). The tandem repeats, pPC349_XHY and pPD284_XHY, with high-sequence homology were used, and the results showed that they presented the colocalized distribution signal in chromosomes. For P. xiaohei, pPD284_XHY produced hybridizations in chromosomes 1, 5, 8, and 9 in the hybrid. The combination of pPD284_XHY, 45S rDNA, and 5S rDNA distinctly distinguished six pairs of chromosomes, and the three pairs of chromosomes showed a significant difference in the hybridization between homologous chromosomes. The repeat probes used produced similar FISH hybridizations in the DH; nevertheless, pPD284_XHY generated an additional hybridization site in the telomere region of chromosome 14. Moreover, two pairs of chromosomes showed differential hybridization distributions between homologous chromosomes. Comparisons of the distinguished chromosomes between hybrid and DH poplar showed that three pairs of chromosomes in the DH presented hybridization patterns that varied from those of the hybrid. The No. 8 chromosome in DH and one of the homologous chromosomes in P. xiaohei shared highly similar FISH patterns, which suggested the possibility of intact or mostly partial transfer of the chromosome between the hybrid and DH. Our study will contribute to understanding the genetic mechanism of chromosomal variation in P. xiaohei and derived DH plants.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1298
Author(s):  
Gabriel C. Dworschak ◽  
Iris A. L. M. van Rooij ◽  
Heiko M. Reutter

Anorectal malformations (ARM) represent a rare birth defect of the hindgut that occur in approximately 1 in 3000 live births. Around 60% of ARM occur with associated anomalies including defined genetic syndromes and associations with chromosomal aberrations. The etiology of ARM is heterogeneous, with the individual environmental or genetic risk factors remaining unknown for the majority of cases. The occurrence of familial ARM and previous epidemiologic analysis suggest autosomal dominant inheritance in a substantial subset of ARM patients. The implicated mortality and reduced fecundity in patients with ARM would lead to allele loss. However, mutational de novo events among the affected individuals could compensate for the evolutionary pressure. With the implementation of exome sequencing, array-based molecular karyotyping and family-based rare variant analyses, the technologies are available to identify the respective factors. This review discusses the identification of disease-causing variants among individuals with ARM. It highlights the role of mutational de novo events.


2021 ◽  
Author(s):  
Pamela Magini ◽  
Alessandra Mingrino ◽  
Barbara Gega ◽  
Gianluca Mattei ◽  
Rorberto Semeraro ◽  
...  

Unbalanced Structural Variants (uSVs) play important roles in the pathogenesis of several genetic syn- dromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experi- mental protocols protract diagnostic times from three to fifteen days. Long read sequencing approaches, such as Oxford Nanopore Technologies (ONT), have the ability to reduce time to results for the detection of uSVs with the same resolution of current state-of-the-art diagnostic tests. Here we compared ONT to molecular karyotyping for the detection of pathogenic uSVs of 7 patients with previously diagnosed causative CNVs of different sizes and allelic fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs we tested two recip- rocal genomic imbalances in 7q11.23 (1.367 Mb), a 170 kb deletion encompassing NRXN1 and mosaic 6q27 (1.231 Mb) and 2q23.1 (408 kb) deletions. DNA libraries were prepared following ONT standard protocols and sequenced on the GridION device for 48 h. Data generated during runs were analysed in online mode, using NanoGLADIATOR. We were capable to identify all pathogenic CNVs with detection time inversely proportional to size and allelic fraction. Aneuploidies were called after only 30 minutes of sequencing, while 30 hours were needed to call CNVs < 500 kb also in mosaic state (44%). These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30 minutes to 30 hours time-frame.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Zhigalina ◽  
N Skryabin ◽  
O Kanbekova ◽  
V Artyukhova ◽  
A Svetlakov ◽  
...  

Abstract Study question Does the molecular karyotype of the cell-free DNA (cfDNA) from the blastocyst fluid (BF) can predict the efficiency of self-correction of karyotype of preimplantation embryo? Summary answer Detection of aneuploidies in the BF potentially can point out on effective self-correction of blastocyst karyotype and consequently on high developmental potential of mosaic embryos. What is known already Correction of aneuploidies in the preimplantation embryos can be provided by several mechanisms, including apoptosis. The predominant death of aneuploid cells was demonstrated in mouse embryos (Bolton, 2016). A positive correlation was also shown between the concentration of cfDNA from the BF of human blastocyst and the morphology of the embryo, as well as between the activity of caspase–3 and the concentration of cfDNA (Rule, 2018). The incidence of failed amplification after WGA being significantly higher among euploid blastocysts (Magli, 2019). The capacity of abnormal cells extruding into the BF would be related to the embryo development potential (Gianaroli, 2019). Study design, size, duration This is a prospective observational study of thirty-one Day 5 human blastocysts. Cryopreserved blastocysts were received after treatment cycles at the IVF Center with informed consent obtained from couples. The average age of 15 women was 32.25±5 years. The morphological characteristics of blastocysts were estimated in accordance with the Gardner classification (Gardner, Schoolcraft, 1999). The procedure of BF aspiration and trophectoderm (TE) and ICM cells separation of the blastocysts was previously described (Tsuiko, 2018). Participants/materials, setting, methods WGA was performed by PicoPLEX kit (Rubicon Genomics, USA) or REPLI-g Mini kit (Qiagen) according to manufacturer’s protocols. The DNA of the BF, ICM and TE were analyzed separately using cCGH, aCGH and NGS. SurePrint G3 Human CGH Microarrays (8x60K, Agilent Technologies) were used according to the manufacturer’s recommendations. Image analysis was done using ISIS (v.5.5) (Metasystems) and Agilent CytoGenomics Software (v.3). VeriSeq™ PGS Kit - MiSeq® System (Illumina) was used for NGS. Main results and the role of chance Molecular karyotypes of all three samples - BF, ICM and TE, were obtained for 23 (74.2%) blastocysts. A correlation between the woman’s age and the number of aneuploidies in cfDNA (p = 0.0009) was found. A positive correlation may indicate that the number of aneuploidies in the embryonic cells increases with the age of a woman, however, the embryonic karyotype undergoes self-correcting through the elimination of aneuploid cells. It was noted that well-developing blastocysts (groups 4–5, according to Gardner’s classification) had fewer aneuploidies in ICM (p = 0.0141) and TE (p = 0.0436). In contrast, there was a tendency to an increase in the number of aneuploidies in the BF during blastocysts transition from stage 3 to 5 (p = 0.3542). We assessed the relationship between the number of aneuploidies in groups of blastocysts with different characteristics of ICM (groups “A” and “B” according to Gardner’s classification). These groups significantly differ in the number of aneuploidies in cfDNA (p = 0.0352), although the statistically significant differences between the number of aneuploidies in ICM (p = 0.5992) and in TE (p = 0.5934) was not detected. Thus, higher-quality embryos in terms of ICM morphology contain more abnormalities in the BF, since in this group the elimination of aneuploid cells is more efficient. Limitations, reasons for caution The number of embryos is limited in this study. More comprehensive studies are required to confirm the observed tendency. Wider implications of the findings: Aneuploid cells elimination can be a cause of increasing cfDNA concentration in the BF, which may be a marker of the viability of mosaic embryos when it is necessary to decide on mosaic embryo transfer. This study was supported by the RFBR (15–04–08265) and by the RSF (20–74–00064). Trial registration number Not applicable


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton S. Olenev ◽  
Elena E. Baranova ◽  
Olesya V. Sagaydak ◽  
Alexandra M. Galaktionova ◽  
Ekaterina S. Kuznetsova ◽  
...  

The objective — To assess the effectiveness of including NIPT in the structure of prenatal diagnostics in Moscow. Material and Methods — Totally 5,181 pregnancies undergoing screening for fetal trisomy using NIPT during the period from 01.04.2020 to 30.09.2020 in Russia. According to the results of biochemical blood test, the patients were divided into two groups: group of high risk (cut-off ≥1:100) (n=208) and group of intermediate risk (cut-off 1:101 – 1:2500) (n=4,973). Patients at high-risk cell-free DNA (cfDNA) were offered an invasive procedure, followed by genetic analysis (cytogenetic or molecular karyotyping). Results — Among the analysed samples, 117 (2.3%) had a high risk of the following common fetal chromosome abnormalities by NIPT: trisomy 21 in 50 cases, trisomy 18 in 17 cases, trisomy 13 in 5 cases, and sex chromosome aneuploidy (SCA) in 22 cases. Additionally, rare autosomal trisomies and/or subchromosomal arrangements were revealed in 23 cases. We found associations between cfDNA concentration and high risk of aneuploidies (particularly trisomy 21) and fetal sex and between low fetal fraction (FF) and body mass index (BMI) as well as maternal weight. Additionally, a high risk of trisomy 21 was associated with the term gestation. Conclusion — The effectiveness of technological resources that are based on cfDNA testing for detecting abnormal fetal chromosome numbers and other chromosomal anomalies is high and reduce rates of false positive results. Therefore, NIPT should be more widely used as a first-line screening method.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hojka Gregoric Kumperscak ◽  
Danijela Krgovic ◽  
Maja Drobnic Radobuljac ◽  
Nina Senica ◽  
Andreja Zagorac ◽  
...  

Introduction: Early-onset schizophrenia (EOS) and bipolar disorder (EOB) start before the age of 18 years and have a more severe clinical course, a worse prognosis, and a greater genetic loading compared to the late-onset forms. Copy number variations (CNVs) are an important genetic factor in the etiology of psychiatric disorders. Therefore, this study aimed to analyze CNVs in patients with EOS and EOB and to establish genotype-phenotype relationships for contiguous gene syndromes or genes affected by identified CNVs.Methods: Molecular karyotyping was performed in 45 patients, 38 with EOS and seven with EOB hospitalized between 2010 and 2017. The exclusion criteria were medical or neurological disorders or IQ under 70. Detected CNVs were analyzed according to the standards and guidelines of the American College of Medical Genetics.Result: Molecular karyotyping showed CNVs in four patients with EOS (encompassing the PAK2, ADAMTS3, and ADAMTSL1 genes, and the 16p11.2 microduplication syndrome) and in two patients with EOB (encompassing the ARHGAP11B and PRODH genes). In one patient with EOB, a chromosomal aneuploidy 47, XYY was found.Discussion: Our study is the first study of CNVs in EOS and EOB patients in Slovenia. Our findings support the association of the PAK2, ARHGAP11B, and PRODH genes with schizophrenia and/or bipolar disorder. To our knowledge, this is also the first report of a multiplication of the ADAMTSL1 gene and the smallest deletion of the PAK2 gene in a patient with EOS, and one of the few reports of the 47, XYY karyotype in a patient with EOB.


Cytogenomics ◽  
2021 ◽  
pp. 73-85
Author(s):  
Anja Weise ◽  
Thomas Liehr

Sign in / Sign up

Export Citation Format

Share Document