Kinematic calibration of a 3-PRRU parallel manipulator based on the complete, minimal and continuous error model

2021 ◽  
Vol 71 ◽  
pp. 102158
Author(s):  
Lingyu Kong ◽  
Genliang Chen ◽  
Hao Wang ◽  
Guanyu Huang ◽  
Dan Zhang
Robotica ◽  
2018 ◽  
Vol 36 (9) ◽  
pp. 1386-1401 ◽  
Author(s):  
Huizhen Zhang ◽  
Gang Cheng ◽  
Xianlei Shan ◽  
Feng Guo

SUMMARYIn this paper, the kinematic accuracy problem caused by geometric errors of a 2(3HUS+S) parallel manipulator is described. The kinematic equation of the manipulator is obtained by establishing a D–H (Denavit–Hartenberg) coordinate system. A D–H transformation matrix is used as the error-modeling tool, and the kinematic error model of the manipulator integrating manufacturing and assembly errors is established based on the perturbation theory. The iterative Levenberg–Marquardt algorithm is used to identify the geometric errors in the error model. According to the experimentally measured attitudes, the kinematic calibration process is simulated using MATLAB software. The simulation and experiment results show that the attitude errors of the moving platforms after calibration are reduced compared with before the calibration, and the kinematic accuracy of the manipulator is significantly improved. The correctness and effectiveness of the error model and the kinematic calibration method of the 2(3HUS+S) parallel manipulator for simulation of hip joint motion are verified.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


Measurement ◽  
2022 ◽  
pp. 110672
Author(s):  
Xiaopeng Chen ◽  
Yanyang Liu ◽  
Yang Xu ◽  
Siyuan Gou ◽  
Siyan Ma ◽  
...  

Author(s):  
Chunyang Han ◽  
Yang Yu ◽  
Zhenbang Xu ◽  
Xiaoming Wang ◽  
Peng Yu ◽  
...  

This paper presents a kinematic calibration of a 6-RRRPRR parallel kinematic mechanism with offset RR-joints that would be applied in space positioning field. In order to ensure highly accurate and highly effective calibration process, the complete error model, which contains offset universal joint errors, is established by differentiating inverse kinematic model. A calibration simulation comparison with non-complete error model shows that offset universal joint errors are crucial to improve the calibration accuracy. Using the error model, an optimal calibration configuration selection algorithm is developed to determine the least number of measurement configurations as well as the optimal selection of these configurations from the feasible configuration set. To verify the effectiveness of kinematic calibration, a simulation and experiment were performed. The results show that the developed approach can effectively improve accuracy of a parallel kinematic mechanism with relatively low number of calibration configurations.


Author(s):  
Guozhi Li ◽  
Fuhai Zhang ◽  
Yili Fu ◽  
Shuguo Wang

Purpose The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions. Design/methodology/approach The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe. Findings Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC. Originality/value The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu

As a new type of manufacturing equipment, redundant hybrid machines have the theoretical advantage over the traditional serial machines in efficiently processing large structural parts with high material removal ratio and complex parts with curved surfaces. In order to solve the accuracy problem of the redundantly actuated spatial parallel module of a five-axis hybrid machine, an improved kinematic calibration method is proposed in this article. First, different from error modeling for the corresponding non-redundant parallel module, the geometric error model of the redundantly actuated spatial parallel module considers the deformations at active joints caused by actuation redundancy as an error source. Then, the applicable error model is developed using projection technique to remove the need of active joints’ stiffness measurement or modeling. Later, the practical error model is derived from model reduction method to avoid using additional sensors or gratings. Finally, three forms of relative measurement and step identification are adopted for the calibration work, and the bilinear interpolation compensation function is introduced to ensure the calibration effect. On this basis, the kinematic calibration of the redundantly actuated spatial parallel module is conducted. The max position errors are reduced from original −0.192 to 0.075 mm after RM1 and SI1, and then further reduced to 0.014 mm after bilinear interpolation compensation, while the max orientation errors are reduced from −0.017° and 0.249° to −0.005° and −0.007° after RM2 and SI2, and RM3 and SI3, respectively. A contrasting experiment is also carried out with the previous method for the corresponding non-redundant parallel module. As a result, the proposed method shows better convergence value and speed in identifying error parameters, and therefore the effectiveness and efficiency of the proposed method for the redundantly actuated spatial parallel module are validated.


2014 ◽  
Vol 28 (10) ◽  
pp. 707-714 ◽  
Author(s):  
Jifeng Zhang ◽  
Qiaohong Chen ◽  
Chuanyu Wu ◽  
Qinchuan Li

Sign in / Sign up

Export Citation Format

Share Document