scholarly journals Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

Redox Biology ◽  
2014 ◽  
Vol 3 ◽  
pp. 16-24 ◽  
Author(s):  
Rawand Masoud ◽  
Tania Bizouarn ◽  
Chantal Houée-Levin
Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3867-3877 ◽  
Author(s):  
Wei Tian ◽  
Xing Jun Li ◽  
Natalie D. Stull ◽  
Wenyu Ming ◽  
Chang-Il Suh ◽  
...  

AbstractThe phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b558 and cytosolic p67phox, p47phox, and p40phox subunits that undergo membrane translocation upon cellular activation. The function of p40phox, which binds p67phox in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40phox and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40phox in FcγR-induced oxidase activation, we used immunofluorescence and real-time imaging of FcγR-induced phagocytosis. YFP-tagged p67phox and p40phox translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67phox and p47phox accumulation on nascent and internalized phagosomes did not require p40phox or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40phox PI3P-binding domain or wortmannin. Translocation of p40phox to nascent phagosomes required binding to p67phox but not PI3P, although the loss of PI3P binding reduced p40phox retention after phagosome internalization. We conclude that p40phox functions primarily to regulate FcγR-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization.


2007 ◽  
Vol 21 (4) ◽  
pp. 1244-1255 ◽  
Author(s):  
Marie-Héiène Paclet ◽  
Sylvie Berthier ◽  
Lauriane Kuhn ◽  
Jérôme Garin ◽  
Françoise Morel

1993 ◽  
Vol 4 (11) ◽  
pp. 1217-1223 ◽  
Author(s):  
P G Heyworth ◽  
U G Knaus ◽  
J Settleman ◽  
J T Curnutte ◽  
G M Bokoch

Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.


Sign in / Sign up

Export Citation Format

Share Document