scholarly journals Regulation of NADPH oxidase activity by Rac GTPase activating protein(s).

1993 ◽  
Vol 4 (11) ◽  
pp. 1217-1223 ◽  
Author(s):  
P G Heyworth ◽  
U G Knaus ◽  
J Settleman ◽  
J T Curnutte ◽  
G M Bokoch

Activation of the NADPH oxidase of phagocytic cells requires the action of Rac2 or Rac1, members of the Ras superfamily of GTP-binding proteins. Rac proteins are active when in the GTP-bound form and can be regulated by a variety of proteins that modulate the exchange of GDP for GTP and/or GTP hydrolysis. The p190 Rac GTPase Activating Protein (GAP) inhibits human neutrophil NADPH oxidase activity in a cell-free assay system with a K1 of approximately 100 nM. Inhibition by p190 was prevented by GTP gamma S, a nonhydrolyzable analogue of GTP. Similar inhibition was seen with a second protein exhibiting Rac GAP activity, CDC42Hs GAP. The effect of p190 on superoxide (O2-) formation was reversed by the addition of a constitutively GTP-bound Rac2 mutant or Rac1-GTP gamma S but not by RhoA-GTP gamma S. Addition of p190 to an activated oxidase produced no inhibitory effect, suggesting either that p190 no longer has access to Rac in the assembled oxidase or that Rac-GTP is not required for activity once O2- generation has been initiated. These data confirm the role of Rac in NADPH oxidase regulation and support the view that it is the GTP form of Rac that is necessary for oxidase activation. Finally, they raise the possibility that NADPH oxidase may be regulated by the action of GAPs for Rac proteins.

Redox Biology ◽  
2014 ◽  
Vol 3 ◽  
pp. 16-24 ◽  
Author(s):  
Rawand Masoud ◽  
Tania Bizouarn ◽  
Chantal Houée-Levin

2017 ◽  
Vol 6 (8) ◽  
pp. 741-747 ◽  
Author(s):  
Thiago U Pantaleão ◽  
Andrea C F Ferreira ◽  
Maria C S Santos ◽  
Álvaro S P Figueiredo ◽  
Ruy A N Louzada ◽  
...  

Mercury seems to exert an inhibitory effect on deiodinases, but there are few studies using Thimerosal (TM) as the mercury source. We aimed to elucidate the effect of TM on thyroid hormones peripheral metabolism. Adult Wistar female rats received 0.25 µg or 250 µg TM/100 g BW, IM, twice a week, for a month. We evaluated serum total T3 and T4, D1 activity using 125I-rT3 as tracer, and D2 activity using 125I-T4. NADPH oxidase activity was measured by Amplex-red/HRP method and mRNA levels by real time PCR. Serum T4 was increased and T3 decreased by the greatest dose of TM. Even though D1 activity in pituitary and kidney was reduced by the highest dose of TM, hepatic D1 activity and D1 mRNA levels remained unchanged. D2 activity was also significantly decreased by the highest dose of TM in all CNS samples tested, except cerebellum, but D2 mRNA was unaltered. mRNA levels of the tested NADPH oxidases were not affected by TM and NADPH oxidase activity was either unaltered or decreased. Our results indicate that TM might directly interact with deiodinases, inhibiting their activity probably by binding to their selenium catalytic site, without changes in enzyme expression.


2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Jae-Hoon Jeong ◽  
Jung-Hoon Koo ◽  
Jang Soo Yook ◽  
Joon-Yong Cho ◽  
Eun-Bum Kang

Exercise and antioxidants have health benefits that improve cognitive impairment and may act synergistically. In this study, we examined the effects of treadmill exercise (TE) and mitochondria-targeted antioxidant mitoquinone (MitoQ), individually or combined, on learning and memory, mitochondrial dynamics, NADPH oxidase activity, and neuroinflammation and antioxidant activity in the hippocampus of D-galactose-induced aging rats. TE alone and TE combined with MitoQ in aging rats reduced mitochondrial fission factors (Drp1, Fis1) and increased mitochondrial fusion factors (Mfn1, Mfn2, Opa1). These groups also exhibited improved NADPH oxidase activity and antioxidant activity (SOD-2, catalase). TE or MitoQ alone decreased neuroinflammatory response (COX-2, TNF-α), but the suppression was greater with their combination. In addition, aging-increased neuroinflammation in the dentate gyrus was decreased in TE but not MitoQ treatment. Learning and memory tests showed that, contrarily, MitoQ alone demonstrated some similar effects to TE but not a definitive improvement. In conclusion, this study demonstrated that MitoQ exerted some positive effects on aging when used as an isolated treatment, but TE had a more effective role on cognitive impairment, oxidative stress, inflammation, and mitochondria dysfunction. Our findings suggest that the combination of TE and MitoQ exerted no synergistic effects and indicated regular exercise should be the first priority in neuroprotection of age-related cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document