superoxide anion production
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 45)

H-INDEX

60
(FIVE YEARS 5)

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Zaenal Abidin ◽  
Huai-Ting Huang ◽  
Zhen-Hao Liao ◽  
Bo-Ying Chen ◽  
Yu-Sheng Wu ◽  
...  

Moringa is widely known as a plant with high medicinal properties. Therefore, moringa has a high potential for use as an immunostimulant in shrimp. This study investigated the effect of a moringa water extract on the immune response, resistance against V. alginolyticus, and growth performance of whiteleg shrimp. To perform the in vitro assay, hemocytes were incubated with different concentrations of the moringa extract. Furthermore, the moringa extract was incorporated at 0 (control), 1.25 g (ME1.25), 2.5 g (ME2.5), and 5.0 g (ME5.0) per kg of diet for the in vivo assay. During the rearing period, immune responses, namely the total hemocyte count (THC), phenoloxidase (PO) activity, phagocytosis activity, superoxide anion production, and immune-related gene expression were examined on days 0, 1, 2, 4, 7, 14, 21, and 28. Growth performance was measured 60 days after the feeding period. Furthermore, the shrimp were challenged with V. alginolyticus after being fed for different feeding durations. The results of the in vitro assay revealed that 100–250 ppm of the moringa extract enhanced the PO activity, phagocytic rate (PR), and superoxide anion production. The findings of the in vivo assay demonstrated that the THC, PO activity, PR, and immune-related gene expression, including alpha-2-macroglobulin, prophenoloxidase II, penaeidin2, penaeidin3, anti-lipopolysaccharide factor, crustin, lysozyme, superoxide dismutase, and clotting protein, were higher in the group of ME.25 and ME5.0 than in the control and ME1.25 at several time points. Growth performance was significantly increased (p < 0.05) in the ME2.5 group compared to the control group. Furthermore, the dietary ME2.5 resulted in a higher survival rate compared to that of the control group after challenging with V. alginolyticus, especially at ME2.5 administered for 4 and 7 days. This study indicated that the incorporation of the moringa extract at 2.5 g per kg of diet enhanced the immune response, the growth performance of the whiteleg shrimp, and the resistance against V. alginolyticus infection.


Pharmacology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Nada M. Banjac ◽  
Velibor M. Vasović ◽  
Nebojša P. Stilinović ◽  
Dušan V. Prodanović ◽  
Ana D. Tomas Petrović ◽  
...  

<b><i>Introduction:</i></b> This study aimed to assess the influence of different doses of tadalafil on coronary flow and oxidative stress in isolated rat hearts. <b><i>Methods:</i></b> The hearts of male Wistar albino rats (<i>n</i> = 48) were retrogradely perfused according to the Langendorff technique at gradually increased constant perfusion pressure (CPP) (40–120 mm Hg). Coronary flow and oxidative stress markers: nitrite oxide (NO) outflow and superoxide anion production in coronary effluent were measured. The experiments were performed during control conditions and in the presence of tadalafil (10, 20, 50, and 200 nM) alone or with Nω-nitro-L-arginine monomethyl ester (L-NAME) (30 μM). <b><i>Results:</i></b> Tadalafil administration significantly increased coronary flow at all CPP values at all administered doses. Tadalafil led to an increase in the NO levels, but a statistically significant NO release increase was found only at the highest dose and highest CPP. Tadalafil did not significantly affect the release of O<sup>2−</sup>. After inhibiting the nitrite oxide synthase system by L-NAME, tadalafil-induced changes in cardiac flow and NO levels were reversed. L-NAME administration had no pronounced effect on the O<sup>2−</sup> release. <b><i>Conclusion:</i></b> Tadalafil causes changes in the heart vasculature in a dose-dependent manner. It does not lead to a significant increase in the production of superoxide anion radicals.


2021 ◽  
Vol 67 (6) ◽  
pp. 60-67
Author(s):  
R.S. Kozaeva ◽  
◽  
M.O. Klymenko ◽  
V.О. Kostenko ◽  
◽  
...  

We addressed the role of lipopolysaccharide (LPS)-induced systemic inflammatory response (SIR) in the development of oxidative-nitrosative stress in the salivary glands of rats under the influence of alcohol. Ethanol (40%) at the dose of 24 mg/kg was administered intraperitoneally (ip) twice per day for 14 days. SIR was induced by ip administration of LPS (Salmonella typhi) at the dose 0.4 mg/kg for 1 week followed by a weekly LPS administration for 7 weeks. We found that long-term administration of ethanol in the back- ground of LPS-induced SIR increased the circulating level of proinflammatory markers (TNFa, IL-6) and C-reactive protein and this increase exceeded the respective values when LPS and alcohol were administered separately. Under these conditions, in submandibular salivary glands, the superoxide anion production by mitochondria respiratory chain was increased by 25.9 and 30.5%, by microsomal monooxygenases and NO synthase by 19.0 and 27,1%, by phagocyte NADPH-oxidase by 29.5 and 30.0%. The activity of inducible NO-synthase increased by 15.5 and 83.6%, the concentration of peroxynitrites of alkali and alkali-earth metals elevated by 32.5 and 58, 3%, and S- nitrosothiols raised by 20.2 and 22.7%. These changes were accompanied by a decrease in α-amylase activity and the aquaporin-5 concentration that impairs water and protein excretion by salivary glands. We conclude that adminis- tration of ethanol in the background of LPS-induced SIR results in more pronounced development of oxidative- nitrosative stress in the submandibular salivary glands and more marked dysfunction compared to separate use of LPS and alcohol.


2021 ◽  
Author(s):  
Jessica Youwakim ◽  
Diane Vallerand ◽  
Helene Girouard

Abstract Hypertension, a multifactorial chronic inflammatory condition, is a risk factor for neurodegenerative diseases including stroke and Alzheimer’s disease. These diseases have been associated with higher concentration of blood interleukin (IL)-17A. However, the role that IL-17A plays in the relationship between hypertension and brain remains misunderstood. Cerebral blood flow regulation may be the crossroads of these conditions. Hypertension alters cerebral blood flow regulation including neurovascular coupling (NVC). In the present study, the effects of IL-17A on NVC in the context of hypertension induced by angiotensin (Ang) II will be examined. Our results show that the neutralization of IL-17A or the specific inhibition of its receptor prevent the Ang II- induced NVC impairment. These treatments reduce the Ang II-induced cerebral oxidative stress. Tempol and NOX-2 depletion prevent NVC impairment induced by IL-17A. These findings suggest that IL-17A, through superoxide anion production, is an important mediator of cerebrovascular dysregulation induced by Ang II.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mingming Zhang ◽  
Yuerong Xu ◽  
Jianghong Chen ◽  
Chaoshi Qin ◽  
Jing Liu ◽  
...  

Background. Excessive myocardial oxidative stress could lead to the congestive heart failure. NADPH oxidase is involved in the pathological process of left ventricular (LV) remodeling and dysfunction. β3-Adrenergic receptor (AR) could regulate cardiac dysfunction proved by recent researches. The molecular mechanism of β3-AR regulating oxidative stress, especially NADPH oxidase, remains to be determined. Methods. Cardiac hypertrophy was constructed by the transverse aortic constriction (TAC) model. ROS and NADPH oxidase subunits expression were assessed after β3-AR agonist (BRL) or inhibitor (SR) administration in cardiac hypertrophy. Moreover, the cardiac function, fibrosis, heart size, oxidative stress, and cardiomyocytes apoptosis were also detected. Results. β3-AR activation significantly alleviated cardiac hypertrophy and remodeling in pressure-overloaded mice. β3-AR stimulation also improved heart function and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis. Meanwhile, β3-AR stimulation inhibited superoxide anion production and decreased NADPH oxidase activity. Furthermore, BRL treatment increased the neuronal NOS (nNOS) expression in cardiac hypertrophy. Conclusion. β3-AR stimulation alleviated cardiac dysfunction and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis by inhibiting NADPH oxidases. In addition, the protective effect of β3-AR is largely attributed to nNOS activation in cardiac hypertrophy.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1118
Author(s):  
Lu-Lu Wu ◽  
Jin-Hua Bo ◽  
Fen Zheng ◽  
Feng Zhang ◽  
Qi Chen ◽  
...  

The dorsal motor nucleus of the vagus (DMV) is known to control vagal activity. It is unknown whether the DMV regulates sympathetic activity and whether salusin-β in the DMV contributes to autonomic nervous activity. We investigated the roles of salusin-β in DMV in regulating sympathetic-parasympathetic balance and its underline mechanisms. Microinjections were carried out in the DMV and hypothalamic paraventricular nucleus (PVN) in male adult anesthetized rats. Renal sympathetic nerve activity (RSNA), blood pressure and heart rate were recorded. Immunohistochemistry for salusin-β and reactive oxidative species (ROS) production in the DMV were examined. Salusin-β was expressed in the intermediate DMV (iDMV). Salusin-β in the iDMV not only inhibited RSNA but also enhanced vagal activity and thereby reduced blood pressure and heart rate. The roles of salusin-β in causing vagal activation were mediated by NAD(P)H oxidase-dependent superoxide anion production in the iDMV. The roles of salusin-β in inhibiting RSNA were mediated by not only the NAD(P)H oxidase-originated superoxide anion production in the iDMV but also the γ-aminobutyric acid (GABA)A receptor activation in PVN. Moreover, endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting RSNA. These results indicate that salusin-β in the iDMV inhibits sympathetic activity and enhances vagal activity, and thereby reduces blood pressure and heart rate, which are mediated by NAD(P)H oxidase-dependent ROS production in the iDMV. Moreover, GABAA receptor in the PVN mediates the effect of salusin-β on sympathetic inhibition. Endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting sympathetic activity.


2021 ◽  
Vol 22 (16) ◽  
pp. 8980
Author(s):  
Sara Cheleschi ◽  
Sara Tenti ◽  
Stefano Giannotti ◽  
Nicola Veronese ◽  
Jean-Yves Reginster ◽  
...  

This study investigated the possible anti-inflammatory and chondroprotective effects of a combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic (OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination with IL-1β (10 ng/mL) and a specific nuclear factor (NF)-κB inhibitor (BAY-11-7082, 1 µM). Gene expression and release of some pro-inflammatory mediators, metalloproteinases (MMPs), and type II collagen (Col2a1) were evaluated by qRT-PCR and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry; B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-κB subunits were analyzed by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-1β significantly reduced expression and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and MMPs, while it increased Col2a1, compared to baseline or IL-1β. Both drugs reduced apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination demonstrated an increased inhibitory effect on IL-1β than that observed by each single treatment. Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress through the modulation of the NF-κB pathway, supporting their combined use for the treatment of OA.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 191
Author(s):  
Jacopo Fabrello ◽  
Francesca Targhetta ◽  
Maria Ciscato ◽  
Davide Asnicar ◽  
Ilaria Bernardini ◽  
...  

Alternative chemicals to per- and poly-fluoroalkyl substances have recently been introduced in various industrial processes. C6O4 (difluoro{[2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4-yl]oxy}acetic acid) is a new surfactant and emulsifier used as a replacement for perfluorooctanoic acid (PFOA). From an ecotoxicological point of view, in vitro assays are useful tools for assessing the negative effects and understanding the mechanisms of action of chemicals at the cellular level. Here, we present the results of an in vitro study in which the effects of C6O4 were evaluated—for the first time—on haemocytes of the clam Ruditapes philippinarum. Cells were exposed to three concentrations of C6O4 (0.05, 0.5, 5 μg/mL) and the effects on haemocyte viability, haemocyte morphology, differential haemocyte count, lysosomal membrane stability, superoxide anion production, acid phosphatase, and β-glucuronidase activities, as well as on the percentage of micronuclei and chromosomal aberrations were evaluated. The results demonstrated that C6O4 significantly affected haemocyte morphology, lysosomal membrane stability, hydrolytic enzyme activity, and superoxide anion production, and promoted chromosomal aberrations. To the best of our knowledge, this is the first study revealing the in vitro effects of C6O4, a substitute for PFOA, on haemocytes from a bivalve species.


Author(s):  
Rais Reskiawan A. Kadir ◽  
Mansour Alwjwaj ◽  
Zoe McCarthy ◽  
Ulvi Bayraktutan

AbstractTo investigate whether therapeutic hypothermia augments the restorative impact of protein kinase C-β (PKC-β) and Nox2 inhibition on an in vitro model of human blood–brain barrier (BBB). Cells cultured in normoglycaemic (5.5 mM) or hyperglycaemic (25 mM, 6 to 120 h) conditions were treated with therapeutic hypothermia (35 °C) in the absence or presence of a PKC-β inhibitor (LY333531, 0.05 μM) or a Nox2 inhibitor (gp91ds-tat, 50 μM). BBB was established by co-culture of human brain microvascular endothelial cells (HBMECs) with astrocytes (HAs) and pericytes. BBB integrity and function were assessed via transendothelial electrical resistance (TEER) and paracellular flux of sodium fluorescein (NaF, 376 Da). Nox activity (lucigenin assay), superoxide anion production (cytochrome-C reduction assay), cellular proliferative capacity (wound scratch assay) and actin cytoskeletal formation (rhodamine-phalloidin staining) were assessed both in HBMECs and HAs using the specific methodologies indicated in brackets. Therapeutic hypothermia augmented the protective effects of PKC-β or Nox2 inhibition on BBB integrity and function in experimental setting of hyperglycaemia, as evidenced by increases in TEER and concomitant decreases in paracellular flux of NaF. The combinatory approaches were more effective in repairing physical damage exerted on HBMEC and HA monolayers by wound scratch and in decreasing Nox activity and superoxide anion production compared to sole treatment regimen with either agent. Similarly, the combinatory approaches were more effective in suppressing actin stress fibre formation and maintaining normal cytoskeletal structure. Therapeutic hypothermia augments the cerebral barrier-restorative capacity of agents specifically targeting PKC-β or Nox2 pathways.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1365
Author(s):  
Filippo Quitadamo ◽  
Vanessa De Simone ◽  
Romina Beleggia ◽  
Daniela Trono

The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50–190 kDa), medium (M-CTS, 190–310 kDa) and high (H-CTS, 310–375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight.


Sign in / Sign up

Export Citation Format

Share Document