Efficient energy systems with CO2 capture and storage from renewable biomass in pulp and paper mills

2004 ◽  
Vol 29 (9) ◽  
pp. 1583-1598 ◽  
Author(s):  
Kenneth Möllersten ◽  
Lin Gao ◽  
Jinyue Yan ◽  
Michael Obersteiner
2021 ◽  
Vol 3 ◽  
Author(s):  
Elin Svensson ◽  
Holger Wiertzema ◽  
Simon Harvey

The pulp and paper industry has a high potential to contribute to negative emissions through carbon capture and storage (CCS) applied to existing processes. However, there is a need to investigate how CCS solutions also can be combined with implementation of other emerging technologies in pulp and paper mills. This paper investigates the integration of a novel calcination process in two kraft mills and evaluates its potential combination with capture and storage of CO2 from the calcination plant. The alternative calcination process uses electric gas-plasma technology combined with steam slaking and allows replacing the conventional fuel-driven lime kilns with a process driven by electricity. The novel calcination process generates a pure, biogenic, CO2 stream, which provides an opportunity to achieve negative emissions at relatively lower costs. The potential reduction of greenhouse gas emissions when replacing the lime kiln with the plasma calcination concept depends strongly on the emissions intensity of grid electricity, and on whether fossil fuel or biomass was used as a fuel in the lime kiln. If fossil fuel is replaced and electricity is associated with very low emissions, avoided CO2 emissions reach ~50 kt/a for the smaller mill investigated in the paper (ca 400 kt pulp per year) and almost 100 kt/a for the larger mill (ca 700 kt pulp per year). Further emission reductions could then be achieved through CCS from the electrified calcination process, with capture potentials for the two mills of 95 and 164 kt/a, respectively, and capture and storage costs estimated to 36–60 EUR/tCO2.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


2012 ◽  
Vol 11 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Dan Gavrilescu ◽  
Adrian Catalin Puitel ◽  
Gheorghe Dutuc ◽  
Grigore Craciun

1988 ◽  
Vol 20 (1) ◽  
pp. 37-48 ◽  
Author(s):  
L. Panneerselvam

In order to reduce the demand for the forest based raw materials by the organised industrial sectors like the large integrated pulp and paper mills, the Government of India started promoting several small-scale pulp and paper mills based on non-wood agricultural residue raw materials. However promotion of these small mills has created another environmental problem i.e. severe water pollution due to non-recovery of chemicals. Because of the typical characteristics like high silica content etc. of the black liquor produced and the subsequent high capital investment needed for a recovery system, it is not economically feasible for the small Indian mills to recover the chemicals. While the quantity of wastewater generated per tonne of paper produced by a small mill is same as from a large integrated pulp and paper mill with a chemical recovery system, their BOD load is four times higher, due to non recovery of chemicals. However the existing wastewater disposal standards are uniform for large and small mills for e.g. 30 mg BOD/l. To meet these standards, the small mills have to install a capital intensive wastewater treatment plant with heavy recurring operating costs. Therefore the feasible alternative is to implement various pollution abatement measures, with the objective of not only reducing the fibre/chemical loss but also to reduce the investment and operating costs of the final wastewater treatment system. To illustrate this approach, a case study on water pollution abatement and control in a 10 TPD mill, will be discussed.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 101-108
Author(s):  
X. Wang ◽  
T. H. Mize ◽  
F. M. Saunders ◽  
S. A. Baker

Research is focused on an integrated way to simultaneously optimize the bleaching operations and subsequent wastewater treatment for pulp and paper mills. Bleach wastewaters from ClO2-bleached pulping studies at Institute of Paper Science and Technology (IPST) were used as the feed for batch reactors to test and rank the treatability and kinetics. The key aspect of the system is the use of sequential anaerobic/aerobic phases to enhance reductive dehalogenation of chloro-organic materials. Two continuous reactor systems, one operated in an anaerobic-aerobic mode and a second in an aerobic-aerobic mode, received bleaching wastewater obtained from a full-scale plant. Acclimated cultures from both continuous reactors were used to quantify the AOX (Adsorbable Organic Halide) and COD removal from various bleaching wastewaters. In general, the sequential anaerobic/aerobic treatment of bleach wastewater can improve both biotreatability and degradation rates.


Sign in / Sign up

Export Citation Format

Share Document