Biotreatability test of bleach wastewaters from pulp and paper mills

1997 ◽  
Vol 35 (2-3) ◽  
pp. 101-108
Author(s):  
X. Wang ◽  
T. H. Mize ◽  
F. M. Saunders ◽  
S. A. Baker

Research is focused on an integrated way to simultaneously optimize the bleaching operations and subsequent wastewater treatment for pulp and paper mills. Bleach wastewaters from ClO2-bleached pulping studies at Institute of Paper Science and Technology (IPST) were used as the feed for batch reactors to test and rank the treatability and kinetics. The key aspect of the system is the use of sequential anaerobic/aerobic phases to enhance reductive dehalogenation of chloro-organic materials. Two continuous reactor systems, one operated in an anaerobic-aerobic mode and a second in an aerobic-aerobic mode, received bleaching wastewater obtained from a full-scale plant. Acclimated cultures from both continuous reactors were used to quantify the AOX (Adsorbable Organic Halide) and COD removal from various bleaching wastewaters. In general, the sequential anaerobic/aerobic treatment of bleach wastewater can improve both biotreatability and degradation rates.

1988 ◽  
Vol 20 (1) ◽  
pp. 37-48 ◽  
Author(s):  
L. Panneerselvam

In order to reduce the demand for the forest based raw materials by the organised industrial sectors like the large integrated pulp and paper mills, the Government of India started promoting several small-scale pulp and paper mills based on non-wood agricultural residue raw materials. However promotion of these small mills has created another environmental problem i.e. severe water pollution due to non-recovery of chemicals. Because of the typical characteristics like high silica content etc. of the black liquor produced and the subsequent high capital investment needed for a recovery system, it is not economically feasible for the small Indian mills to recover the chemicals. While the quantity of wastewater generated per tonne of paper produced by a small mill is same as from a large integrated pulp and paper mill with a chemical recovery system, their BOD load is four times higher, due to non recovery of chemicals. However the existing wastewater disposal standards are uniform for large and small mills for e.g. 30 mg BOD/l. To meet these standards, the small mills have to install a capital intensive wastewater treatment plant with heavy recurring operating costs. Therefore the feasible alternative is to implement various pollution abatement measures, with the objective of not only reducing the fibre/chemical loss but also to reduce the investment and operating costs of the final wastewater treatment system. To illustrate this approach, a case study on water pollution abatement and control in a 10 TPD mill, will be discussed.


2006 ◽  
Vol 60 (5) ◽  
pp. 724-739 ◽  
Author(s):  
Environmental Technical Committee ◽  
Environmental Protection Committee

Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 443-453 ◽  
Author(s):  
L. Simão ◽  
D. Hotza ◽  
F. Raupp-Pereira ◽  
J. A. Labrincha ◽  
O. R. K. Montedo

Abstract The production of pulp and paper is increasing worldwide, and wastes are therefore being generated in appreciable amounts. Various materials are generated in pulp and paper mills, such as ash, dregs, grits, lime mud and pulp mill sludge. Over the years, these wastes have typically been sent to landfills or incinerated. However, with increased environmental awareness new alternatives have been investigated, especially the valorization of these materials. In this review, the characteristics of the manufacturing process, generated wastes, main destinations and recycling alternatives are addressed. The state of the art indicates that dregs are useful in agriculture as soil amendments, while lime mud can be used in agriculture and in environmental technology, mainly in wastewater treatment. Grits are commonly employed in construction, and pulp mill sludge shows applications in agriculture, construction and energy processes. In conclusion, this review shows several successful cases of recycling wastes from pulp and paper mills.


2001 ◽  
Vol 55 (12) ◽  
pp. 1742-1749,017
Author(s):  
Hiromutsu Wada ◽  
Prisnar Siriacha ◽  
Yoshinari Kobayashi

1994 ◽  
Vol 48 (7) ◽  
pp. 920-936
Author(s):  
Environmental Technical Committee ◽  
Environmental Protection Committee

Sign in / Sign up

Export Citation Format

Share Document