Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells

2008 ◽  
Vol 33 (2) ◽  
pp. 282-285 ◽  
Author(s):  
Suresh Kumar Dhungel ◽  
Jinsu Yoo ◽  
Kyunghae Kim ◽  
Somnath Ghosh ◽  
Sungwook Jung ◽  
...  
2018 ◽  
Vol 10 (3) ◽  
pp. 73 ◽  
Author(s):  
Huseyn Mamedov ◽  
Mustafa Muradov ◽  
Zoltan Konya ◽  
Akos Kukovecz ◽  
Krisztian Kordas ◽  
...  

Solar cells based on c-Si/porous-Si/CdS/ZnxCd1-xO heterojunctions were synthesized by depositing CdS films on c-Si/porous-Si (PS) substrates by electrochemical deposition (ED). PS layers with systematically varied pore diameter (8-45 nm) and were fabricated on p-type c-Si wafers using electrochemical etching. The window layers of ZnxCd1-xO with several Zn concentrations(x=0.2; 0.4; 0.5 and 0.6) were also deposited on the CdS buffer layers by ED. The photoelectrical properties of heterojunctions were studied as functions of PS pore size and Zn content in ZnxCd1-xO. The optimal pore size and Zn contents were found to be 10 nm and x=0.6, respectively. These yielded a solar cell sample exhibiting an efficiency of 9.9%, the maximum observed in this study. Full Text: PDF ReferencesM.A.Green. "Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination", Progress in Photovoltaic 7, 327 (1999). CrossRef P.Papet, O. Nichiporik, A. Kaminski et al. "Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching", Solar Energy Materials and Solar Cells 90, 2319 (2006). CrossRef P. Vitanovet et al. "High-efficiency solar cell using a thin porous silicon layer", Thin Solid Films 297, 299 (1997). CrossRef L. Santinacci et al. "Electrochemical and optical characterizations of anodic porous n-InP(1 0 0) layers", Electrochim. Acta 56, 878 (2010). CrossRef V.Lehmann. "The Physics of Macropore Formation in Low Doped n‐Type Silicon", J. Electrochem. Soc. 140, 2836 (1993). CrossRef Bisi O et al. "Porous silicon: a quantum sponge structure for silicon based optoelectronics", Surface Science Reports 38, 1 (2000). CrossRef A.I. Raid et al. Applied Nanoscience 7, 9 (2016). CrossRef M.A. Naser et al. "Characteristics of Nanostructure Silicon Photodiode using Laser Assisted Etching", Procedia Engineering 53, 393 (2013). CrossRef D.H. Oh et al. J. Ceram. Process. Res. "Effects of a H2SO4 treatment on the optical properties in porous Si layers and electrical properties of diode devices fabricated with a H2SO4 treated porous Si layer", 9, 57 (2008). DirectLink H. Foll et al. "Formation and application of porous silicon", Materials Science and Engineering R 280, 1 (2002). CrossRef P. Granitzer et al. "Porous Silicon—A Versatile Host Material", Materials 3, 943 (2010). CrossRef G. Korotcenkov, Porous Silicon: From Formation to Application (Taylor and Francis Group, CRC Press, Boca Raton, USA, 2016). DirectLink V.Y. Yerokhov. "Porous silicon in solar cell structures: a review of achievements and modern directions of further use", Renewable and Sustainable Energy Rev. 3, 291 (1999). CrossRef A. Ramizy et al. "New optical features to enhance solar cell performance based on porous silicon surfaces", Appl. Surf. Science 257, 6112 (2011). CrossRef F. Ruske et al. "Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications", Thin Solid Films 515, 8695 (2007). CrossRef Y. Alivov et al. "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes", Appl. Phys. Lett. 83, 2943 (2003). CrossRef G.V. Lashkarev et al. "Properties of zinc oxide at low and moderate temperatures", Low Temp. Phys. 37, 289 (2011). CrossRef P.M. Devshette et al. "Growth and physical properties of ZnxCd1−xO thin films prepared by spray pyrolysis technique", J. of Alloys and Compunds 463, 576 (2008). CrossRef Y. Caglar et al. "Morphological, optical and electrical properties of CdZnO films prepared by sol–gel method", J. Phys. D: Appl. Phys. 42, 065421 (2009). CrossRef A. Abdinov et al. "Photosensitivity of p,n-Si/n-Cd1−xZnxS heterojunctions manufactured by a method of electrochemical deposition", Thin Solid Films 480-481, 388 (2005). CrossRef A Abdinov et al. "Investigation of electrodeposited p-Si/Cd1 − xZnxS1 − ySey heterojunction solar cells", Thin Solid Films 511-512,140 (2006) CrossRef J.B. Orhan et al. "Nano-textured superstrates for thin film silicon solar cells: Status and industrial challenges", Sol. Cells 140, 344 (2015). CrossRef H.Ch. Alan et al. "Light management of tandem solar cells on nanostructured substrates", J. Photon. Energy 7, 027001 (2017) CrossRef


1996 ◽  
Vol 429 ◽  
Author(s):  
Abdelilah Slaoui ◽  
Aziz Lachiq ◽  
Laurent Ventura ◽  
Jean Claude Muller

AbstractLimiting thermal exposure time using Rapid Thermal Processing (RTP) is now emerging as a promising simplified process for manufacturing of terrestrial solar cells in a continuous way. In this work, we present results on simultaneous formation of emitter, back-surface field and surface passivation in a single rapid thermal cycle. Spin-on dopants (SOD) solutions are used as dopant sources. Optimal emitter profiles, low sheet resistances and high gettering effect are reached. The residual SOD film is used as a surface passivation layer. Solar cells with efficiencies in the range 10 – 14 % are obtained depending on temperature and time processing.


Sign in / Sign up

Export Citation Format

Share Document