Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance

2008 ◽  
Vol 33 (8) ◽  
pp. 1775-1783 ◽  
Author(s):  
Mohammad Hadi Akbari ◽  
Behzad Rismanchi
Equipment ◽  
2006 ◽  
Author(s):  
W. Q. Tao ◽  
Y. W. Tan ◽  
W. Jiang ◽  
Z. Y. Li ◽  
Y. L. He

2016 ◽  
Vol 41 (4) ◽  
pp. 3023-3037 ◽  
Author(s):  
M. Rahimi-Esbo ◽  
A.A. Ranjbar ◽  
A. Ramiar ◽  
E. Alizadeh ◽  
M. Aghaee

Author(s):  
Y. Zhou ◽  
G. Lin ◽  
A. J. Shih ◽  
S. J. Hu

The clamping pressure used in assembling a proton exchange membrane (PEM) fuel cell stack can have significant effects on the overall cell performance. The pressure causes stack deformation, particularly in the gas diffusion layer (GDL), and impacts gas mass transfer and electrical contact resistance. Existing research for analyzing the assembly pressure effects is mostly experimental. This paper develops a sequential approach to study the pressure effects by combining the mechanical and electrochemical phenomena in fuel cells. The model integrates gas mass transfer analysis based on the deformed GDL geometry and modified parameters with the microscale electrical contact resistance analysis. The modeling results reveal that higher assembly pressure increases cell resistance to gas mass transfer, causes an uneven current density distribution, and reduces electrical contact resistance. These combined effects show that as the assembly pressure increases, the PEM fuel cell power output increases first to a maximum and then decreases over a wide range of pressures. An optimum assembly pressure is observed. The model is validated against published experimental data with good agreements. This study provides a basis for determining the assembly pressure required for optimizing PEM fuel cell performance.


Author(s):  
Isaac Perez-Raya ◽  
Abel Hernandez-Guerrero ◽  
Daniel Juarez-Robles ◽  
M. Ernesto Gutierrez-Rivera ◽  
J. C. Rubio-Arana

This work presents the results of a study of a new radial configuration proposed for the gas flow field for a PEM fuel cell. The objective of this study is to understand the effects of this configuration on the fuel cell performance. The results are compared with the radial designs proposed in previous analysis. The proposed designs on this work show an improvement on the cell performance, with a better use of the reaction area compared with a flow free radial design. The results also show that the effect of channeling the flow inside these radial configurations helps to improve the fuel cell performance.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Yulin Wang ◽  
Xiaoai Wang ◽  
Gaojian Chen ◽  
Chao Chen ◽  
Xiaodong Wang ◽  
...  

2014 ◽  
Vol 804 ◽  
pp. 75-78 ◽  
Author(s):  
Vinh Nguyen Duy ◽  
Jung Koo Lee ◽  
Ki Won Park ◽  
Hyung Man Kim

Flow-field design affects directly to the PEM fuel cell performance. This study aims to stimulate the under-rib convection by adding sub-channels and by-passes to the conventional-advanced serpentine flow-field to improve the PEM fuel cell performance. The experimental results show that if reacting gases flow in the same direction as the neighboring main channels, the under-rib convection shows a flow from the main channels to the sub-channels makes progress in reducing pressure drop and enhancing uniform gas supply and water diffusion. Alternatively, if in the direction opposite to that of the neighboring main channels, the under-rib convection shows a flow from the inlet side towards the outlet side across the sub-channel as in the conventional serpentine channels. Analyses of the local transport phenomena in the cell suggest that the inlet by-pass supplies the reacting gases uniformly from the entrance into the sub-channels and the outlet by-pass enhances water removal. Novel serpentine flow-field pattern employing sub-channels and by-passes shows uniform current density and temperature distribution by uniformly supplying the reacting gas. Furthermore, performance improvement of around 20% is observed from the experimental performance evaluation. As a result, longer battery life is expected by reducing the mechanical stress of membrane electrode assembly.


Sign in / Sign up

Export Citation Format

Share Document