Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production

2014 ◽  
Vol 68 ◽  
pp. 6-13 ◽  
Author(s):  
Antonella Marone ◽  
Giulio Izzo ◽  
Luciano Mentuccia ◽  
Giulia Massini ◽  
Patrizia Paganin ◽  
...  
2012 ◽  
Vol 37 (7) ◽  
pp. 5612-5622 ◽  
Author(s):  
Antonella Marone ◽  
Giulia Massini ◽  
Chiara Patriarca ◽  
Antonella Signorini ◽  
Cristiano Varrone ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Weronika Cieciura-Włoch ◽  
Sebastian Borowski

This study investigated the batch experiments on biohydrogen production from wastes of plant and animal origin. Several substrates including sugar beet pulp (SBP), sugar beet leaves (SBL), sugar beet stillage (SBS), rye stillage (RS), maize silage (MS), fruit and vegetable waste (FVW), kitchen waste (KW) and slaughterhouse waste (SHW) including intestinal wastes, meat tissue, post flotation sludge were tested for their suitability for hydrogen production. Generally, the substrates of plant origin were found to be appropriate for dark fermentation, and the highest hydrogen yield of 280 dm3 H2/kg VS was obtained from fruit and vegetable waste. Contrary to these findings, slaughterhouse waste as well as kitchen waste turned out to be unsuitable for hydrogen production although their methane potential was high. It was also concluded that the combined thermal pretreatment with substrate acidification was needed to achieve high hydrogen yields from wastes.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


Author(s):  
A. Iulianelli ◽  
◽  
G. Bagnato ◽  
A. Iulianelli ◽  
A. Vita Vita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document