Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil

2019 ◽  
Vol 136 ◽  
pp. 342-351 ◽  
Author(s):  
P. Dinesha ◽  
Shiva Kumar ◽  
Marc A. Rosen
2020 ◽  
Author(s):  
Hemanandh Janarthanam ◽  
Venkatesan Sorakka Ponnappan ◽  
Ganesan Subbiah ◽  
Purushothaman Mani ◽  
D. Suman ◽  
...  

2021 ◽  
Author(s):  
Tikendra Nath Verma ◽  
Abhishek Dasore ◽  
Pankaj Shrivastava ◽  
Ümit Ağbulut ◽  
Suat Sarıdemir ◽  
...  

Abstract In this study, exergy, energy, performance and emission analysis were investigated for the repurpose used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP) and petroleum diesel fuel (PDF) fueled compression ignition engine under various engine loads. In this study, 20% of each biodiesel was tested in single cylinder, four stroke, diesel engine, given that open literature shows the potential use of biodiesel of up to 20% in a diesel engine without modification. The diesel engine was used to investigate their performance, combustion and emission characteristics of diesel-repurpose used cooking oil, Jatropha curcas, and Pongamia Pinnata fuel samples at different compression ratios and load condition. The results showed that thermal efficiency is higher with the PDF compared to DRUCO20, DJC20, DPP20 biodiesel blends. The exhaust gas temperature decreased and specific fuel consumption of the engine were increased by adding RUCO, Jatropha curcas, Pongamia Pinnata to petroleum diesel fuel. Engine ecological analysis showed that blended fuel reduces the average hydrocarbons (HC), carbon monoxide (CO) and NO X than petroleum diesel fuel. While DRUCO20 showed better performance and reduction in ecological analysis but higher ecological of CO 2 is comparable with DCJ20 and DPP20.


Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


Sign in / Sign up

Export Citation Format

Share Document