EXPERIMENTAL INVESTIGATION OF PERFORMANCE AND EMISSION CHARACTERITICS ON LHR ENIGNE WITH BIODIESEL EXTRACTED FROM WASTE COOKING OIL

Author(s):  
V.C. Nijanthan ◽  
S. Krishnamani ◽  
T. Mohanraj
Author(s):  
R. Vinod ◽  
B.L. Keerthi ◽  
Y.H. Basavarajappa ◽  
S. Karthik

Extensive usage of automobiles with conventional fuels has led to excessive air pollution. This adverse situation initiated a need for developing an alternative fuels which can resolve pollution problems and act as a substitute to conventional fuel. One such alternative identified is biodiesel. In this study waste cooking oil and fish oil is used to prepare blends of F10, F20, F30 and C10, C20, C30. These blends are used to evaluate the performance and emission of a computerized P244 Kirloskar single cylinder four stroke water cooled diesel engine.


Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


Sign in / Sign up

Export Citation Format

Share Document