Improving wind turbine blade based on multi-objective particle swarm optimization

2020 ◽  
Vol 161 ◽  
pp. 525-542 ◽  
Author(s):  
Yingjue Li ◽  
Kexiang Wei ◽  
Wenxian Yang ◽  
Qiong Wang
2015 ◽  
Vol 27 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Guimei Gu ◽  
◽  
Rang Hu ◽  
Yuanyuan Li

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270003/03.jpg"" width=""340"" />Classification results of SVM-PSO</div> In order to identify two failures of crack damage and edge damage to wind turbine blade, a damage identification system was designed by acoustic emission technique. This system took advantage of wireless technique for signal collection and transmission and upper computer for receiving and processing data. This system adopted acoustic emission sensor, NRF905 wireless transmission, upper computer designed by VB language, and the serial communication function of VB for data receiving. Data was firstly normalized after being received. Then, the energy features of data were abstracted by db wavelet. With the abstracted features, support vector machine model was established and verified, and the machine parameters were optimized by particle swarm optimization. Results show that the system is reliable in data collection and transmission, and the correctness of damage identification obviously increases by optimizing the support vector machine with particle swarm. The design provides method to monitor the status of rotating object, so this system can provide model base for subsequent studies.


Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document