Corrigendum to “Effect of antioxidant additives on oxides of nitrogen (NOx) emission reduction from Annona biodiesel operated diesel engine” [Renew. Energy 148 (2020) 1321–1326]

2021 ◽  
Vol 168 ◽  
pp. 1403
Author(s):  
Silambarasan Rajendran
1996 ◽  
Author(s):  
Zhiyu Han ◽  
All Uludogan ◽  
Gregory J. Hampson ◽  
Rolf D. Reitz

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Christopher Simoson ◽  
John Wagner

Diesel engines are critical in fulfilling transportation and mechanical/electrical power generation needs throughout the world. The engine’s combustion by-products spawn health and environmental concerns, so there is a responsibility to develop emission reduction strategies. However, difficulties arise since the minimization of one pollutant often bears undesirable side effects. Although legislated standards have promoted successful emission reduction strategies for larger engines, developments in smaller displacement engines has not progressed in a similar fashion. In this paper, a reduced-order dynamic model is presented and experimentally validated to demonstrate the use of cooled exhaust gas recirculation (EGR) to alleviate the tradeoff between oxides of nitrogen reduction and performance preservation in a small displacement diesel engine. EGR is an effective method for internal combustion engine oxides of nitrogen (NOx) reduction, but its thermal throttling diminishes power efficiency. The capacity to cool exhaust gases prior to merging with intake air may achieve the desired pollutant effect while minimizing engine performance losses. Representative numerical results were validated with experimental data for a variety of speed, load, and EGR testing scenarios using a 0.697l three-cylinder diesel engine equipped with cooled EGR. Simulation and experimental results showed a 16% drop in NOx emissions using EGR, but experienced a 7% loss in engine torque. However, the use of cooled EGR realized a 23% NOx reduction while maintaining a smaller performance compromise. The concurrence between simulated and experimental trends establishes the simplified model as a predictive tool for diesel engine performance and emission studies. Further, the presented model may be considered in future control algorithms to optimize engine performance and thermal and emission characteristics.


Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2016 ◽  
Vol 20 (2) ◽  
pp. 303-306
Author(s):  
Nicholas A. Musa ◽  
Georgina M. Teran ◽  
Saraki A. Yaman

The use of biodiesel in running diesel has been called for, with a view to mitigating the environmental pollution, depletion, cost and scarcity associated with the use diesel in running diesel engine. So the need to characterize the emissions from these biodiesel, cannot be overemphasized, hence this paper presents the evaluation of the emissions of particulate matter (PM), carbon monoxide(CO), hydrocarbon(HC) and oxides of nitrogen (NOX) from diesel engine run on coconut oil biodiesel, its blends and diesel for comparison. The result of the evaluation showed that NOX emission increased with increase in percentage of the biodiesel in the blend, while PM, CO, HC decreased with increase in the percentage biodiesel in the blend. In comparison with diesel, diesel has the least emission of NOX and the highest emission of PM, CO and HC.Keywords: Diesel engine, diesel, coconut oil biodiesel, blends, emissions


Sign in / Sign up

Export Citation Format

Share Document