An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets

Author(s):  
Ahmad Reza Salehiyoun ◽  
Hamid Zilouei ◽  
Mohammad Safari ◽  
Francesco Di Maria ◽  
Seyed Hashem Samadi ◽  
...  
2021 ◽  
Author(s):  
Ahmad Reza Salehiyoun ◽  
Hamid Zilouei ◽  
Mohammad Safari ◽  
Francesco Di Maria ◽  
Seyed Hashem Samadi ◽  
...  

2006 ◽  
Vol 53 (8) ◽  
pp. 23-32 ◽  
Author(s):  
D. Bolzonella ◽  
P. Pavan ◽  
S. Mace ◽  
F. Cecchi

This paper presents a comparison of dry anaerobic digestion reactors fed with differently sorted municipal organic solid wastes. One reactor was fed with source sorted organic wastes and a second reactor was fed with mixed organic wastes consisting of grey wastes, mechanically selected municipal solid wastes and sludge. The two reactors utilised the same process (Valorga) and operational conditions at full scale. The results of the study emphasise the influence of the kind of treated material on the process performances, especially in terms of biogas and methane production, thus, energy reclamation. The reactor treating the source sorted organic waste and the reactor treating the mixed organic wastes generated some 200 m3 and 60 m3 of biogas per ton of waste treated, respectively, while the specific methane production was some 0.40 and 0.13 m3CH4/kgTVS, respectively. The mass balance and the final fate of the digested material from the two reactors were also clearly different. As for the costs, these were some 29 € per ton of treated waste (50% for personnel) and 53 €/ton for disposing of the rejected materials. Incomes were some 100 €/ton (on average) and an other 15 €/ton came from green certificates. The initial investment was 16 million Euros.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Edwin N. Richard ◽  
Askwar Hilonga ◽  
Revocatus L. Machunda ◽  
Karoli N. Njau

AbstractRecently, there are increased efforts by municipals and researchers to investigate the potential of utilizing municipal solid wastes (MSW) for resources recovery. In many parts of developing countries, MSW is mostly collected for disposal with little emphasis on resources recovery. However, the MSW has high organic and moisture contents, and are suitable substrates for anaerobic digestion (AD) process to recover biogas for energy and digestate which can be used as fertilizers or for soil amendments. Resources recovery from the AD process consists of four metabolic stages; hydrolysis, acidogenesis, acetogenesis, and methanogenesis. These metabolic stages can be affected by several factors such as the nature of substrates, accumulation of volatile fatty acids, and ammonia inhibition. In this review, different optimization strategies towards resources recoveries such as pre-treatment, co-digestion, trace elements supplementation, optimization of key parameters and the use of granular activated carbon are discussed. The review reveals that the currently employed optimization strategies fall short in several ways and proposes the need for improvements.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chaudhry Arslan ◽  
Asma Sattar ◽  
Ji Changying ◽  
Abdul Nasir ◽  
Irshad Ali Mari ◽  
...  

The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of37±0.1°C and55±0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/gCODremovedunder PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/gCODremovedto 89.67 mL/gCODremoved, 91.77 mL/gCODremovedto 145.93 mL/gCODremoved, and 15.36 mL/gCODremovedto 117.62 mL/gCODremovedfor FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.


2011 ◽  
Vol 172 (1) ◽  
pp. 321-325 ◽  
Author(s):  
L.A. Fdez.-Güelfo ◽  
C. Álvarez-Gallego ◽  
D. Sales Márquez ◽  
L.I. Romero García

1989 ◽  
Vol 20-21 (1) ◽  
pp. 461-478 ◽  
Author(s):  
C. J. Rivard ◽  
M. E. Himmel ◽  
T. B. Vinzant ◽  
W. S. Adney ◽  
C. E. Wyman ◽  
...  

2019 ◽  
Vol 83 ◽  
pp. 01011 ◽  
Author(s):  
Khaled Elsharkawy ◽  
Mohamed Elsamadony ◽  
Hafez Afify

Organic solid wastes are produced with large amount wherever there are human activities. However, improper treated organic wastes made them as sources of diseases. On the other hand, these fractions contain nutrients and energy, so they have also valuable resources. As a result, exploring their potential as an energy source can be accomplish via anaerobic digestion process, in which, organics converted into hydrogen, methane and/or ethanol. Therefore, this manuscript introduces an overview of the common applied types of reactor that can handle these types of wastes in their solid state and recover them in term of biogas, as well as, stabilize the produced digestate to bio-fertilizers by compositing approach. A comparison also listed to demonstrate the optimum operational conditions and expected amount of biogas from each type.


Sign in / Sign up

Export Citation Format

Share Document