Idiopathic diaphragmatic paralysis—Satisfactory improvement of inspiratory muscle function by inspiratory muscle training

2009 ◽  
Vol 165 (2-3) ◽  
pp. 266-267 ◽  
Author(s):  
M. Petrovic ◽  
H. Lahrmann ◽  
W. Pohl ◽  
T. Wanke
Author(s):  
Mariana B. Pinto ◽  
Patrícia M. Bock ◽  
Andressa S.O. Schein ◽  
Juliana Portes ◽  
Raíssa B. Monteiro ◽  
...  

This study evaluated the effects of inspiratory muscle training (IMT) in glucose control and respiratory muscle function in patients with diabetes. It was a randomized clinical trial conducted at the Physiopathology Laboratory of the Hospital de Clínicas de Porto Alegre. Patients with Type 2 diabetes were randomly assigned to IMT or placebo-IMT (P-IMT), performed at 30% and 2% of maximal inspiratory pressure, respectively, every day for 12 weeks. The main outcome measures were HbA1c, glycemia, and respiratory muscle function. Thirty patients were included: 73.3% women, 59.6 ± 10.7 years old, HbA1c 8.7 ± 0.9% (71.6 ± 9.8 mmol/mol), and glycemia 181.8 ± 57.8 mg/dl (10.5 ± 3.2 mmol/L). At the end of the training, HbA1c was 8.2 ±0.3% (66.1 ± 3.3 mmol/mol) and 8.7 ± 0.3% (71.6 ± 3.3 mmol/mol) for the IMT and P-IMT groups, respectively (p = .8). Fasting glycemia decreased in both groups with no difference after training although it was lower in IMT at 8 weeks: 170.0 ± 11.4 mg/dl(9.4 ± 0.6 mmol/L) and 184.4 ± 15.0 mg/dl (10.2 ± 0.8 mmol/L) for IMT and P-IMT, respectively (p < .05). Respiratory endurance time improved in the IMT group (baseline = 325.9 ± 51.1 s and 305.0 ± 37.8 s; after 12 weeks = 441.1 ± 61.7 s and 250.7 ± 39.0 s for the IMT and P-IMT groups, respectively; p < .05). Considering that glucose control did not improve, IMT should not be used as an alternative to other types of exercise in diabetes. Higher exercise intensities or longer training periods might produce better results. The clinical trials identifier is NCT 03191435.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S149
Author(s):  
Jonathon L. Stickford ◽  
Timothy D. Mickleborough ◽  
N J. Morgan ◽  
Timothy A. VanHaitsma

2015 ◽  
Vol 95 (9) ◽  
pp. 1264-1273 ◽  
Author(s):  
Daniel Langer ◽  
Noppawan Charususin ◽  
Cristina Jácome ◽  
Mariana Hoffman ◽  
Alison McConnell ◽  
...  

Background Most inspiratory muscle training (IMT) interventions in patients with chronic obstructive pulmonary disease (COPD) have been implemented as fully supervised daily training for 30 minutes with controlled training loads using mechanical threshold loading (MTL) devices. Recently, an electronic tapered flow resistive loading (TFRL) device was introduced that has a different loading profile and stores training data during IMT sessions. Objective The aim of this study was to compare the efficacy of a brief, largely unsupervised IMT protocol conducted using either traditional MTL or TFRL on inspiratory muscle function in patients with COPD. Design Twenty patients with inspiratory muscle weakness who were clinically stable and participating in a pulmonary rehabilitation program were randomly allocated to perform 8 weeks of either MTL IMT or TFRL IMT. Methods Participants performed 2 daily home-based IMT sessions of 30 breaths (3–5 minutes per session) at the highest tolerable intensity, supported by twice-weekly supervised sessions. Adherence, progression of training intensity, increases in maximal inspiratory mouth pressure (Pimax), and endurance capacity of inspiratory muscles (Tlim) were evaluated. Results More than 90% of IMT sessions were completed in both groups. The TFRL group tolerated higher loads during the final 3 weeks of the IMT program, with similar effort scores on the 10-Item Borg Category Ratio (CR-10) Scale, and achieved larger improvements in Pimax and Tlim than the MTL group. Limitations A limitation of the study was the absence of a study arm involving a sham IMT intervention. Conclusions The short and largely home-based IMT protocol significantly improved inspiratory muscle function in both groups and is an alternative to traditional IMT protocols in this population. Participants in the TFRL group tolerated higher training loads and achieved larger improvements in inspiratory muscle function than those in the MTL group.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lijuan An ◽  
Baiyan Li ◽  
Dan Ming ◽  
Weizhan Wang

Respiratory muscle function has a significant effect on stroke. Stroke is one of the most common cardiovascular and cerebrovascular diseases in the clinic and has a significant impact on the quality of life of patients. Hemiplegia, cerebral hemorrhage, and even death can occur, mainly in the elderly. In this paper, we meta-analyzed the effect of inspiratory muscle training on respiratory muscle function. In this article, we used a topic search method to search for relevant literature on respiratory muscle training and obtained 58 and 32 literature studies from CNKI and Wanfang Data, respectively. As a result of the screening, 36 and 28 documents were obtained. In this paper, 64 selected articles were studied. The authors make statistics on the literature of designing serum content index and multislice spiral CT (Member of the Society of Cardiological Technicians) image of patients, so as to analyze the influence of CT image and inspiratory muscle training on respiratory muscle function. The study showed that FVC, FEV1, MIP, and diaphragm mobility of the experimental group were significantly improved after treatment in more than 85% of the studies ( P < 0.05 ), while those of the control group were not significantly improved ( P > 0.05 ). The comparison between the two groups after treatment showed that FVC, FEV1, MIP, and diaphragm mobility of the experimental group were higher than those of the control group ( P < 0.05 ). The application of multislice spiral CT image analysis technology can effectively evaluate the effect of inspiratory muscle training on respiratory dysfunction in stroke patients, the mechanism of which regulates the expression of related pathways, suppresses the inflammatory response, and can reduce oxidative stress damage. Therefore, respiratory muscle training can improve the function of respiratory muscle and reduce the death rate of cerebellar hemorrhage in patients with stroke and other vascular diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255431
Author(s):  
Marine Van Hollebeke ◽  
Diego Poddighe ◽  
Tin Gojevic ◽  
Beatrix Clerckx ◽  
Jan Muller ◽  
...  

Inspiratory muscle training (IMT) improves respiratory muscle function and might enhance weaning outcomes in patients with weaning difficulties. An electronic inspiratory loading device provides valid, automatically processed information on breathing characteristics during IMT sessions. Adherence to and quality of IMT, as reflected by work of breathing and power generated by inspiratory muscles, are related to improvements in inspiratory muscle function in patients with chronic obstructive pulmonary disease. The aim of this study was to investigate the validity of an electronic training device to assess and provide real-time feedback on breathing characteristics during inspiratory muscle training (IMT) in patient with weaning difficulties. Patients with weaning difficulties performed daily IMT sessions against a tapered flow-resistive load of approximately 30 to 50% of the patient’s maximal inspiratory pressure. Airflow and airway pressure measurements were simultaneously collected with the training device (POWERbreatheKH2, POWERbreathe International Ltd, UK) and a portable spirometer (reference device, Pocket-Spiro USB/BT100, M.E.C, Belgium). Breath by breath analysis of 1002 breaths of 27 training sessions (n = 13) against a mean load of 46±16% of the patient’s maximal inspiratory pressure were performed. Good to excellent agreement (Intraclass correlation coefficients: 0.73–0.97) was observed for all breathing characteristics. When individual differences were plotted against mean values of breaths recorded by both devices, small average biases were observed for all breathing characteristics. To conclude, the training device provides valid assessments of breathing characteristics to quantify inspiratory muscle effort (e.g. work of breathing and peak power) during IMT in patients with weaning difficulties. Availability of valid real-time data of breathing responses provided to both the physical therapist and the patient, can be clinically usefull to optimize the training stimulus. By adapting the external load based on the visual feedback of the training device, respiratory muscle work and power generation during IMT can be maximized during the training.


Sign in / Sign up

Export Citation Format

Share Document