Effect of an Inspiratory Muscle Training (IMT) Program on Respiratory Muscle Function, Symptoms of Dyspnea, Respiratory Muscle Activation and Tissue Oxygen Delivery During Exercise Breathing in a Patient with Idiopathic Unilateral Diaphragmatic Paralysis: A Case Report

Author(s):  
S. Dacha ◽  
Z. Louvaris ◽  
L. Janssens ◽  
D. Testelmans ◽  
R. Gosselink ◽  
...  
Author(s):  
Reid A. Mitchell ◽  
Scott T. Apperely ◽  
Satvir S. Dhillon ◽  
Julia Zhang ◽  
Kyle G. Boyle ◽  
...  

This case report characterizes the physiological responses to incremental cycling and determines the effects of 12 weeks of inspiratory muscle training (IMT) on respiratory muscle strength, exercise capacity and dyspnea in a physically active 59-year-old female, four years after a left-sided extra-pleural pneumonectomy (EPP). On separate days, a symptom limited incremental exercise test and a constant work rate (CWR) test at 75% of peak work rate (WR) were completed, followed by 12 weeks of IMT and another CWR test. IMT consisted of two sessions of 30 repetitions twice daily for 5 days per week. Physiological and perceptual variables were measured throughout each exercise test. The participant had a total lung capacity that was 43% predicted post-EPP. A rapid and shallow breathing pattern was adopted throughout exercise, and the ratio of minute ventilation to carbon dioxide output was elevated for a given work rate. Oxygen uptake was 74%predicted and WR was 88%predicted. Following IMT, maximal inspiratory pressure improved by 36% (-27.1 cmH2O) and endurance time by 31s, with no observable changes in any submaximal or peak cardiorespiratory variables during exercise. The intensity and unpleasantness of dyspnea increased by 2 and 3 Borg 0-10 units, respectively, at the highest equivalent submaximal exercise time achieved on both tests. Despite having undergone a significant reduction in lung volume post-EPP, the participant achieved a relatively normal peak incremental WR, which may reflect a high level of physical conditioning. This case report also demonstrates that IMT can effectively increase respiratory muscle strength several years following EPP.


Author(s):  
Mariana B. Pinto ◽  
Patrícia M. Bock ◽  
Andressa S.O. Schein ◽  
Juliana Portes ◽  
Raíssa B. Monteiro ◽  
...  

This study evaluated the effects of inspiratory muscle training (IMT) in glucose control and respiratory muscle function in patients with diabetes. It was a randomized clinical trial conducted at the Physiopathology Laboratory of the Hospital de Clínicas de Porto Alegre. Patients with Type 2 diabetes were randomly assigned to IMT or placebo-IMT (P-IMT), performed at 30% and 2% of maximal inspiratory pressure, respectively, every day for 12 weeks. The main outcome measures were HbA1c, glycemia, and respiratory muscle function. Thirty patients were included: 73.3% women, 59.6 ± 10.7 years old, HbA1c 8.7 ± 0.9% (71.6 ± 9.8 mmol/mol), and glycemia 181.8 ± 57.8 mg/dl (10.5 ± 3.2 mmol/L). At the end of the training, HbA1c was 8.2 ±0.3% (66.1 ± 3.3 mmol/mol) and 8.7 ± 0.3% (71.6 ± 3.3 mmol/mol) for the IMT and P-IMT groups, respectively (p = .8). Fasting glycemia decreased in both groups with no difference after training although it was lower in IMT at 8 weeks: 170.0 ± 11.4 mg/dl(9.4 ± 0.6 mmol/L) and 184.4 ± 15.0 mg/dl (10.2 ± 0.8 mmol/L) for IMT and P-IMT, respectively (p < .05). Respiratory endurance time improved in the IMT group (baseline = 325.9 ± 51.1 s and 305.0 ± 37.8 s; after 12 weeks = 441.1 ± 61.7 s and 250.7 ± 39.0 s for the IMT and P-IMT groups, respectively; p < .05). Considering that glucose control did not improve, IMT should not be used as an alternative to other types of exercise in diabetes. Higher exercise intensities or longer training periods might produce better results. The clinical trials identifier is NCT 03191435.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lijuan An ◽  
Baiyan Li ◽  
Dan Ming ◽  
Weizhan Wang

Respiratory muscle function has a significant effect on stroke. Stroke is one of the most common cardiovascular and cerebrovascular diseases in the clinic and has a significant impact on the quality of life of patients. Hemiplegia, cerebral hemorrhage, and even death can occur, mainly in the elderly. In this paper, we meta-analyzed the effect of inspiratory muscle training on respiratory muscle function. In this article, we used a topic search method to search for relevant literature on respiratory muscle training and obtained 58 and 32 literature studies from CNKI and Wanfang Data, respectively. As a result of the screening, 36 and 28 documents were obtained. In this paper, 64 selected articles were studied. The authors make statistics on the literature of designing serum content index and multislice spiral CT (Member of the Society of Cardiological Technicians) image of patients, so as to analyze the influence of CT image and inspiratory muscle training on respiratory muscle function. The study showed that FVC, FEV1, MIP, and diaphragm mobility of the experimental group were significantly improved after treatment in more than 85% of the studies ( P < 0.05 ), while those of the control group were not significantly improved ( P > 0.05 ). The comparison between the two groups after treatment showed that FVC, FEV1, MIP, and diaphragm mobility of the experimental group were higher than those of the control group ( P < 0.05 ). The application of multislice spiral CT image analysis technology can effectively evaluate the effect of inspiratory muscle training on respiratory dysfunction in stroke patients, the mechanism of which regulates the expression of related pathways, suppresses the inflammatory response, and can reduce oxidative stress damage. Therefore, respiratory muscle training can improve the function of respiratory muscle and reduce the death rate of cerebellar hemorrhage in patients with stroke and other vascular diseases.


Thorax ◽  
2018 ◽  
Vol 73 (10) ◽  
pp. 942-950 ◽  
Author(s):  
Noppawan Charususin ◽  
Rik Gosselink ◽  
Marc Decramer ◽  
Heleen Demeyer ◽  
Alison McConnell ◽  
...  

BackgroundThis study aimed to investigate whether adjunctive inspiratory muscle training (IMT) can enhance the well-established benefits of pulmonary rehabilitation (PR) in patients with COPD.Methods219 patients with COPD (FEV1: 42%±16% predicted) with inspiratory muscle weakness (PImax: 51±15 cm H2O) were randomised into an intervention group (IMT+PR; n=110) or a control group (Sham-IMT+PR; n=109) in this double-blind, multicentre randomised controlled trial between February 2012 and October 2016 (ClinicalTrials.gov NCT01397396). Improvement in 6 min walking distance (6MWD) was a priori defined as the primary outcome. Prespecified secondary outcomes included respiratory muscle function and endurance cycling time.FindingsNo significant differences between the intervention group (n=89) and the control group (n=85) in improvements in 6MWD were observed (0.3 m, 95% CI −13 to 14, p=0.967). Patients who completed assessments in the intervention group achieved larger gains in inspiratory muscle strength (effect size: 1.07, p<0.001) and endurance (effect size: 0.79, p<0.001) than patients in the control group. 75 s additional improvement in endurance cycling time (95% CI 1 to 149, p=0.048) and significant reductions in Borg dyspnoea score at isotime during the cycling test (95% CI −1.5 to −0.01, p=0.049) were observed in the intervention group.InterpretationImprovements in respiratory muscle function after adjunctive IMT did not translate into additional improvements in 6MWD (primary outcome). Additional gains in endurance time and reductions in symptoms of dyspnoea were observed during an endurance cycling test (secondary outcome)Trial registration numberNCT01397396; Results.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255431
Author(s):  
Marine Van Hollebeke ◽  
Diego Poddighe ◽  
Tin Gojevic ◽  
Beatrix Clerckx ◽  
Jan Muller ◽  
...  

Inspiratory muscle training (IMT) improves respiratory muscle function and might enhance weaning outcomes in patients with weaning difficulties. An electronic inspiratory loading device provides valid, automatically processed information on breathing characteristics during IMT sessions. Adherence to and quality of IMT, as reflected by work of breathing and power generated by inspiratory muscles, are related to improvements in inspiratory muscle function in patients with chronic obstructive pulmonary disease. The aim of this study was to investigate the validity of an electronic training device to assess and provide real-time feedback on breathing characteristics during inspiratory muscle training (IMT) in patient with weaning difficulties. Patients with weaning difficulties performed daily IMT sessions against a tapered flow-resistive load of approximately 30 to 50% of the patient’s maximal inspiratory pressure. Airflow and airway pressure measurements were simultaneously collected with the training device (POWERbreatheKH2, POWERbreathe International Ltd, UK) and a portable spirometer (reference device, Pocket-Spiro USB/BT100, M.E.C, Belgium). Breath by breath analysis of 1002 breaths of 27 training sessions (n = 13) against a mean load of 46±16% of the patient’s maximal inspiratory pressure were performed. Good to excellent agreement (Intraclass correlation coefficients: 0.73–0.97) was observed for all breathing characteristics. When individual differences were plotted against mean values of breaths recorded by both devices, small average biases were observed for all breathing characteristics. To conclude, the training device provides valid assessments of breathing characteristics to quantify inspiratory muscle effort (e.g. work of breathing and peak power) during IMT in patients with weaning difficulties. Availability of valid real-time data of breathing responses provided to both the physical therapist and the patient, can be clinically usefull to optimize the training stimulus. By adapting the external load based on the visual feedback of the training device, respiratory muscle work and power generation during IMT can be maximized during the training.


Sign in / Sign up

Export Citation Format

Share Document