A deep learning predictive model for selective maintenance optimization

Author(s):  
Hadis Hesabi ◽  
Mustapha Nourelfath ◽  
Adnène Hajji
BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Leihong Wu ◽  
Xiangwen Liu ◽  
Joshua Xu

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia B. Dias ◽  
Sofia J. Hadjileontiadou ◽  
José Diniz ◽  
Leontios J. Hadjileontiadis

AbstractCoronavirus (Covid-19) pandemic has imposed a complete shut-down of face-to-face teaching to universities and schools, forcing a crash course for online learning plans and technology for students and faculty. In the midst of this unprecedented crisis, video conferencing platforms (e.g., Zoom, WebEx, MS Teams) and learning management systems (LMSs), like Moodle, Blackboard and Google Classroom, are being adopted and heavily used as online learning environments (OLEs). However, as such media solely provide the platform for e-interaction, effective methods that can be used to predict the learner’s behavior in the OLEs, which should be available as supportive tools to educators and metacognitive triggers to learners. Here we show, for the first time, that Deep Learning techniques can be used to handle LMS users’ interaction data and form a novel predictive model, namely DeepLMS, that can forecast the quality of interaction (QoI) with LMS. Using Long Short-Term Memory (LSTM) networks, DeepLMS results in average testing Root Mean Square Error (RMSE) $$<0.009$$ < 0.009 , and average correlation coefficient between ground truth and predicted QoI values $$r\ge 0.97$$ r ≥ 0.97 $$(p<0.05)$$ ( p < 0.05 ) , when tested on QoI data from one database pre- and two ones during-Covid-19 pandemic. DeepLMS personalized QoI forecasting scaffolds user’s online learning engagement and provides educators with an evaluation path, additionally to the content-related assessment, enriching the overall view on the learners’ motivation and participation in the learning process.


2021 ◽  
Author(s):  
Bao-Ye sun ◽  
Pei-Yi Gu ◽  
Ruo-Yu Guan ◽  
Cheng Zhou ◽  
Jian-Wei Lu ◽  
...  

Abstract Background & Aims: Preoperative prediction of microvascular invasion (MVI) is critical for treatment strategy making in patients with hepatocellular carcinoma (HCC). We aimed to develop a deep learning (DL) model based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status and clinical outcomes in patients with HCC. Methods We retrospectively included a total of 321 HCC patients with pathologically confirmed MVI status. Preoperative DCE-MRI of these patients were collected, annotated and further analyzed by DL in this study. A predictive model for MVI integrating DL-predicted MVI status (DL-MVI) and clinical parameters was constructed with multivariate logistic regression. Results Of 321 HCC patients, 136 patients were pathologically MVI absent and 185 patients were MVI present. Recurrence-free survival (RFS) and overall survival (OS) were significantly different between the DL-predicted MVI-absent and MVI-present. Among all clinical variables, only DL-predicted MVI status and AFP were independently associated with MVI: DL-MVI (odds ratio [OR]=35.738; 95% confidence interval [CI]: 14.027-91.056; p<0.001), AFP (OR=4.634, 95% CI: 2.576-8.336; p<0.001). To predict the presence of MVI, DL-MVI combined with AFP achieved an area under the curve (AUC) of 0.824. Conclusions Our predictive model combining DL-MVI and AFP achieved good performance for predicting MVI and clinical outcomes in patients with HCC.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1134
Author(s):  
Cai Li ◽  
Jianguo Zhang ◽  
Luxiao Sang ◽  
Lishuang Gong ◽  
Longsheng Wang ◽  
...  

In this paper, a deep learning (DL)-based predictive analysis is proposed to analyze the security of a non-deterministic random number generator (NRNG) using white chaos. In particular, the temporal pattern attention (TPA)-based DL model is employed to learn and analyze the data from both stages of the NRNG: the output data of a chaotic external-cavity semiconductor laser (ECL) and the final output data of the NRNG. For the ECL stage, the results show that the model successfully detects inherent correlations caused by the time-delay signature. After optical heterodyning of two chaotic ECLs and minimal post-processing are introduced, the model detects no patterns among corresponding data. It demonstrates that the NRNG has the strong resistance against the predictive model. Prior to these works, the powerful predictive capability of the model is investigated and demonstrated by applying it to a random number generator (RNG) using linear congruential algorithm. Our research shows that the DL-based predictive model is expected to provide an efficient supplement for evaluating the security and quality of RNGs.


Sign in / Sign up

Export Citation Format

Share Document