scholarly journals A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium

2017 ◽  
Vol 7 ◽  
pp. 1595-1607 ◽  
Author(s):  
Habib-Olah Sayehvand ◽  
Amir Basiri Parsa

Heat transfer behavior of unsteady flow of squeezing nanofluid (Copper+water) between two parallel plates is investigated. By using the appropriate transformation for the velocity and temperature, the basic equations governing the flow and heat transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy Perturbation Method and numerically using Runge-Kutta-Fehlberg method with shooting technique. Effects on the behavior of velocity and temperature for various values of relevant parameters are illustrated graphically. The skin-friction coefficient, heat transfer and Nusselt number rate are also tabulated for various governing parameters. The results indicate that, for nanofluid flow, the rates of heat transfer and velocity had direct relationship with squeeze number and nanoparticle volume fraction they are also a decreasing function of those parameters


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Umair Rashid ◽  
Thabet Abdeljawad ◽  
Haiyi Liang ◽  
Azhar Iqbal ◽  
Muhammad Abbas ◽  
...  

The focus of the present paper is to analyze the shape effect of gold (Au) nanoparticles on squeezing nanofluid flow and heat transfer between parallel plates. The different shapes of nanoparticles, namely, column, sphere, hexahedron, tetrahedron, and lamina, have been examined using water as base fluid. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) by suitable transformations. As a result, nonlinear boundary value ordinary differential equations are tackled analytically using the homotopy analysis method (HAM) and convergence of the series solution is ensured. The effects of various parameters such as solid volume fraction, thermal radiation, Reynolds number, magnetic field, Eckert number, suction parameter, and shape factor on velocity and temperature profiles are plotted in graphical form. For various values of involved parameters, Nusselt number is analyzed in graphical form. The obtained results demonstrate that the rate of heat transfer is maximum for lamina shape nanoparticles and the sphere shape of nanoparticles has performed a considerable role in temperature distribution as compared to other shapes of nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document