scholarly journals WITHDRAWN: Effect of dye-loading time and device-architecture on the performance of natural dye-sensitized solar cells based on zinc oxide and red frangipani dye

Author(s):  
Wan Almaz Dhafina ◽  
Hasiah Salleh ◽  
Muhamad Zalani Daud ◽  
Mohd Sabri Mohd Ghazali
2018 ◽  
Vol 1 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Maxwell T. Robinson ◽  
Marie E. Armbruster ◽  
Avi Gargye ◽  
David E. Cliffel ◽  
G. Kane Jennings

RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42013-42023 ◽  
Author(s):  
Ting-Kuang Chang ◽  
Yun Chi

The sensitizer TF-tBu_C3F7 has shown the highest overall efficiencies of JSC = 18.47 mA cm−2, VOC = 767 mV, FF = 0.71 and PCE = 10.05% under simulated one sun irradiation, due to the fine balance between dye loading and reduced charge recombination.


2021 ◽  
Author(s):  
Indriana Kartini ◽  
Adhi Dwi Hatmanto

This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.


2019 ◽  
Vol 23 (04n05) ◽  
pp. 599-610 ◽  
Author(s):  
Siddhartha Kumar ◽  
Whitney Webre ◽  
Jacob Schaffner ◽  
Sheikh M. S. Islam ◽  
Francis D’Souza ◽  
...  

The first example of A2B2 tetrabenzoporphyrin (KW-4) was synthesized, characterized and evaluated as a sensitizer for dye-sensitized solar cells. UV-vis and fluorescence spectroscopy revealed red-shifted and broadened absorption spectra of A2B2 tetrabenzoporphyrin as compared with its A2 dibenzo- and A2B2 dibenzoporphyrin analogues, which is a desired feature of dyes for dye-sensitized solar cells. DFT calculations also indicate favorable electron density distribution on the HOMO and LUMO of KW-4. However, the power conversion efficiency of the solar cell based on tetrabenzoporphyrin KW-4 displayed inferior performance than that of the solar cell based on A2 dibenzoporphyrin KW-2. The lower performance of the KW-4 cell was ascribed to two factors: the low lying LUMO energy level leading to less efficient electron injection and the “flat geometry” of the dye on TiO2surface facilitating charge recombination and decreasing dye loading. The investigation of anchoring group effect suggests that the acrylic acid group is a better anchoring group than pentadienyl carboxylic acid.


Sign in / Sign up

Export Citation Format

Share Document