oxide nanorods
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 229)

H-INDEX

62
(FIVE YEARS 13)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Younes Hanifehpour ◽  
Babak Mirtamizdoust ◽  
Jaber Dadashi ◽  
Ruiyao Wang ◽  
Mahboube Rezaei ◽  
...  

A novel Bi (III) coordination compound, [Bi(HQ)(Cl)4]n ((Q = pyridine-4-carbaldehyde thiosemicarbazone), was prepared in this research using a sonochemical technique. SEM, infrared spectroscopy (IR), XRD, and single-crystal X-ray analysis were utilized to analyze the Bi(III) coordination compound. The structure determined using single-crystal X-ray crystallography indicates that the coordination compound is a 1D polymer in solid state and that the coordination number of bismuth (III) ions is six, (BiSCl5), with one S donor from the organic ligand and five Cl donors from anions. It is equipped with a hemidirectional coordination sphere. It is interesting that the ligand has been protonated in the course of the reaction with a Cl- ion balancing the charge. This compound’s supramolecular properties are directed and regulated by weak directional intermolecular interactions. Through π–π stacking interactions, the chains interact with one another, forming a 3D framework. Thermolysis of the compound at 170 °C with oleic acid resulted in the formation of pure phase nanosized Bi (III) oxide. SEM technique was used to examine the morphology and size of the bismuth (III) oxide product produced.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Qomaruddin ◽  
Olga Casals ◽  
Hutomo Suryo Wasisto ◽  
Andreas Waag ◽  
Joan Daniel Prades ◽  
...  

In this work, nitrogen dioxide (NO2) gas sensors based on zinc oxide nanorods (ZnO NRs) decorated with gold nanoparticles (Au NPs) working under visible-light illumination with different wavelengths at room temperature are presented. The contribution of localized surface plasmon resonant (LSPR) by Au NPs attached to the ZnO NRs is demonstrated. According to our results, the presence of LSPR not only extends the functionality of ZnO NRs towards longer wavelengths (green light) but also increases the response at shorter wavelengths (blue light) by providing new inter-band gap energetic states. Finally, the sensing mechanism based on LSPR Au NPs is proposed.


2022 ◽  
Vol 891 ◽  
pp. 162074
Author(s):  
Youqiang Wang ◽  
Heli Yu ◽  
Arslan Majeed ◽  
Xiangqian Shen ◽  
Shanshan Yao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 176-190
Author(s):  
Lijo P. Mona ◽  
Sandile P. Songca ◽  
Peter A. Ajibade

Abstract The synthesis, characterization, and applications of iron oxide nanorods have received attention in recent years. Even though there are several studies on the biological applications of iron oxide nanoparticles, recent studies have shown that rod-shaped iron oxides are effective in magnetic hyperthermia (MHT) as therapeutic technique to treat cancer. This review focused on the synthesis and encapsulation of magnetic iron oxide nanorods (MIONRs) and their use in (MHT) and photothermal therapy (PTT) for cancer cells. Among the synthetic methods that have been used to prepare MIONRs, some could be used to precisely control the particle size of the as-prepared magnetic iron oxide nanoparticles (MIONs), while others could be used to prepare monodisperse particles with uniform size distributions. Some of the results presented in this review showed that magnetic oxide nanorods are more potent in MHT than polyhedral-shaped MIONs. The review shows that mixtures of polyhedral- and rod-shaped MIONs resulted in 59 and 77% cell death, while monodisperse MIONRs resulted in 95% cell death. It could thus be concluded that, for magnetic iron oxide to be effective in MHT and PTT, it is important to prepare monodisperse magnetic oxide nanorods.


Author(s):  
Светлана Сергеевна Налимова ◽  
Замир Валериевич Шомахов ◽  
Ксения Николаевна Пунегова ◽  
Андрей Андреевич Рябко ◽  
Александр Иванович Максимов

Наностержни оксида цинка синтезированы гидротермальным методом. Проведена обработка полученных образцов в водно-спиртовом растворе станната калия и мочевины при 170°С в течение 30 и 60 минут. В результате получены наноструктуры Zn - Sn - O. Химический состав поверхности образцов ZnO и Zn - Sn - O исследован с помощью рентгеновской фотоэлектронной спектроскопии. Проанализирована их чувствительность к парам изопропилового спирта (1000 мд) при температурах 120 °С, 180°С, 250 °С. Показано перераспределение электронной плотности при формировании композитных наноструктур Zn - Sn - O, проявляющееся в химическом сдвиге пиков O1s и Zn2p. Это свидетельствует о перестроении химических связей при замещении атомов цинка оловом. Обнаружено, что чувствительность композитных структур к парам изопропилового спирта значительно превышает чувствительность ZnO во всем исследуемом температурном диапазоне. Улучшение газочувствительных свойств связано с наличием в образцах системы Zn - Sn - O поверхностных центров различного типа, принимающих участие в адсорбции и окислении изопропилового спирта. Zinc oxide nanorods were synthesized by the hydrothermal method. The obtained samples were processed in an aqueous-alcohol solution of potassium stannate and urea at 170 °C during different times. As a result, Zn - Sn - O nanostructures were obtained. The surface chemical composition of ZnO and Zn - Sn - O was studied using the X-ray photoelectron spectroscopy. Its sensitivity to vapors of isopropyl alcohol (1000 ppm) at 120 °C, 180 °C, 250 °C was analyzed. The electron density redistribution during the Zn - Sn - O composite nanostructures formation manifests itself in the chemical shift of the O1s and Zn2p peaks. It confirm the rearrangement of chemical bonds when zinc atoms are replaced by tin ones. It was found that the sensitivity of composite structures to isopropyl alcohol vapors significantly exceeds that of ZnO in the entire temperature range under study. The improvement of gas-sensitive properties is associated with the presence of various types of surface centers in the Zn - Sn - O samples that participate in the adsorption and oxidation of isopropyl alcohol.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 3
Author(s):  
Mohamed Abdulsattar Al-Balushi ◽  
Naser M. Ahmed ◽  
Samer H. Zyoud ◽  
Mohammed Khalil Mohammed Ali ◽  
Hanan Akhdar ◽  
...  

The fabrication of Nano-based shielding materials is an advancing research area in material sciences and nanotechnology. Although bulky lead-based products remain the primary choice for radiation protection, environmental disadvantages and high toxicity limit their potentials, necessitating less costly, compatible, eco-friendly, and light-weight alternatives. The theme of the presented investigation is to compare the ionization radiation shielding potentialities of the lead acetate (LA), lead nitrate (LN), and bismuth nitrate (BN)-doped zinc oxide nanorods-based thin films (ZONRs-TFs) produced via the chemical bath deposition (CBD) technique. The impact of the selected materials’ doping content on morphological and structural properties of ZONRs-TF was investigated. The X-ray diffractometer (XRD) analyses of both undoped and doped TFs revealed the existence of hexagonal quartzite crystal structures. The composition analysis by energy dispersive (EDX) detected the corrected elemental compositions of the deposited films. Field emission scanning electronic microscope (FESEM) images of the TFs showed highly porous and irregular surface morphologies of the randomly aligned NRs with cracks and voids. The undoped and 2 wt.% BN-doped TFs showed the smallest and largest grain size of 10.44 nm and 38.98 nm, respectively. The linear attenuation coefficient (µ) values of all the optimally doped ZONRs-TFs measured against the X-ray photon irradiation disclosed their excrement shielding potency. The measured µ values of the ZONRs-TFs displayed the trend of 1 wt.% LA-doped TF > 1 wt.% LN-doped TF > 3 wt.% BN-doped TF > undoped TFs). The values of μ of the ZONRs-TFs can be customized by adjusting the doping contents, which in turn controls the thickness and morphology of the TFs. In short, the proposed new types of the LA-, LN- and BN-doped ZONRs-TFs may contribute towards the development of the prospective ionization radiation shielding materials.


Author(s):  
Mahesh M. Shanbhag ◽  
Nagaraj P. Shetti ◽  
Shankara S. Kalanur ◽  
Bruno G. Pollet ◽  
Kishor P. Upadhyaya ◽  
...  

Author(s):  
Saheb Ali ◽  
Kattakgoundar Govindaraj Sudha ◽  
Gopalu Karunakaran ◽  
Mariyappan Kowsalya ◽  
Evgeny Kolesnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document