scholarly journals Analysis of quality defects in the fracture surface of fracture splitting connecting rod based on three-dimensional crack growth

2018 ◽  
Vol 10 ◽  
pp. 1022-1029 ◽  
Author(s):  
Zhou Shi ◽  
Shuqing Kou
2013 ◽  
Vol 397-400 ◽  
pp. 1059-1063 ◽  
Author(s):  
Shu Qing Kou ◽  
Hong Yu Yang ◽  
Shen Hua Yang ◽  
Bao Jun Lin

The fracture surface of con-rod is difficult to be quantitatively described due to its indented macro morphology. Thus, the range of fracture surface defect dimension has no uniform standard. In order to solve this question, 3D software about the digital fracture surface reconstruction was developed by combining the fracture splitting technology of con-rod with reverse engineering, which realized the reproduction of its morphology and completed the real area calculation of the surface. The results show that the fracture surface area processed by fracture splitting is 13.1% larger than that of the plane processed by machining. It represents that the defect dimension range of fracture surface is improved compared to empirical value without reducing the bearing capacity and usability.


1990 ◽  
Vol 112 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Vijay Sarihan ◽  
Ji Oh Song

Current design procedures for complicated three-dimensional structural components with component interactions may not necessarily result in optimum designs. The wrist pin end design of the connecting rod with an interference fit is governed by the stress singularity in the region where the wrist pin breaks contact with the connecting rod. Similar problems occur in a wide variety of structural components which involve interference fits. For a better understanding of the problems associated with obtaining optimum designs for this important class of structural interaction only the design problems associated with the wrist pin end of the rod are addressed in this study. This paper demonstrates a procedure for designing a functional and minimum weight wrist pin end of an automobile engine connecting rod with an interference fit wrist pin. Current procedures for Finite Element Method (FEM) model generation in complicated three-dimensional components are very time consuming especially in the presence of stress singularities. Furthermore the iterative nature of the design process makes the process of developing an optimum design very expensive. This design procedure uses a generic modeler to generate the FEM model based on the values of the design variables. It uses the NASTRAN finite element program for structural analysis. A stress concentration factor approach is used to obtain realistic stresses in the region of the stress singularity. For optimization, the approximate optimization strategy in the COPES/CONMIN program is used to generate an approximate design surface, determine the design sensitivities for constrained function minimization and obtain the optimum design. This proposed design strategy is fully automated and requires only an initial design to generate the optimum design. It does not require analysis code modifications to compute the design sensitivities and requires very few costly NASTRAN analyses. The connecting rod design problem was solved as an eight design variable problem with five constraints. A weight reduction of nearly 27 percent was achieved over an existing design and required only thirteen NASTRAN analyses. It is felt that this design strategy can be effectively used in an engineering environment to generate optimum designs of complicated three-dimensional components.


2009 ◽  
Vol 80 (12) ◽  
pp. 1520-1543 ◽  
Author(s):  
Qinglin Duan ◽  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Ted Belytschko

Author(s):  
Eskandari Hadi ◽  
Nami Mohammad Rahim

The problem of fatigue-crack-growth in a rotating disc at different crack orientation angles is studied by using an automated numerical technique, which calculates the stress intensity factors on the crack front through the three-dimensional finite element method. Paris law is used to develop the fatigue shape of initially semi-elliptical surface crack. Because of needs for the higher mesh density and accuracy near the crack, the sub-modeling technique is used in the analysis. The distribution of SIF’s along the crack front at each step of growth is studied and the effect of crack orientation on the rate of crack-growth is investigated. The calculated SIF’s are reasonable and could be used to predict the probable crack growth rates in fracture mechanics analysis and can help engineers to consider in their designing and to prevent any unwanted failure of such components.


2012 ◽  
Vol 2012.20 (0) ◽  
pp. _509-1_-_509-5_
Author(s):  
Tomoyuki AKITA ◽  
Masahiro KUSAKA ◽  
Masaaki KIMURA ◽  
Koichi KAIZU ◽  
Hironobu KINOSHITA

Sign in / Sign up

Export Citation Format

Share Document