Fracture Surface Extraction and Stress Field Estimation From Three-Dimensional Microseismic Data

Author(s):  
Dylan Copeland ◽  
Alfred Lacazette
2015 ◽  
Vol 7 (1) ◽  
pp. 459-494
Author(s):  
L. Giambiagi ◽  
S. Spagnotto ◽  
S. M. Moreiras ◽  
G. Gómez ◽  
E. Stahlschmidt ◽  
...  

Abstract. The Cacheuta sub-basin of the Triassic Cuyo Basin is an example of rift basin inversion contemporaneous to the advance of the Andean thrust front, during the Plio-Quaternary. This basin is one of the most important sedimentary basins in a much larger Triassic NNW-trending depositional system along the southwestern margin of the Pangea supercontinent. The amount and structural style of inversion is provided in this paper by three-dimensional insights into the relationship between inversion of rift-related structures and spatial variations in late Cenozoic stress fields. The Plio-Quaternary stress field exhibits important N–S variations in the foreland area of the Southern Central Andes, between 33 and 34° S, with a southward gradually change from pure compression with σ1 and σ2 being horizontal, to a strike-slip type stress field with σ2 being vertical. We present a 3-D approach for studying the tectonic inversion of the sub-basin master fault associated with strike-slip/reverse to strike-slip faulting stress regimes. We suggest that the inversion of Triassic extensional structures, striking NNW to WNW, occurred during the Plio–Pleistocene in those areas with strike-slip/reverse to strike-slip faulting stress regime, while in the reverse faulting stress regime domain, they remain fossilized. Our example demonstrates the impact of the stress regime on the reactivation pattern along the faults.


2003 ◽  
Vol 9 (10) ◽  
pp. 1159-1187 ◽  
Author(s):  
A. Nandi ◽  
S. Neogy

Vibration-based diagnostic methods are used for the detection of the presence of cracks in beams and other structures. To simulate such a beam with an edge crack, it is necessary to model the beam using finite elements. Cracked beam finite elements, being one-dimensional, cannot model the stress field near the crack tip, which is not one-dimensional. The change in neutral axis is also not modeled properly by cracked beam elements. Modeling of such beams using two-dimensional plane elements is a better approximation. The best alternative would be to use three-dimensional solid finite elements. At a sufficient distance away from the crack, the stress field again becomes more or less one-dimensional. Therefore, two-dimensional plane elements or three-dimensional solid elements can be used near the crack and one-dimensional beam elements can be used away from the crack. This considerably reduces the required computational effort. In the present work, such a coupling of dissimilar elements is proposed and the required transition element is formulated. A guideline is proposed for selecting the proper dimensions of the transition element so that accurate results are obtained. Elastic deformation, natural frequency and dynamic response of beams are computed using dissimilar elements. The finite element analysis of cracked rotating shafts is complicated because of the fact that elastic deformations are superposed on the rigid-body motion (rotation about an axis). A combination of three-dimensional solid elements and beam elements in a rotating reference is proposed here to model such rotors.


2018 ◽  
Vol 84 (864) ◽  
pp. 18-00013-18-00013 ◽  
Author(s):  
Tatsujiro MIYAZAKI ◽  
Takuma INOUE ◽  
Nao-Aki NODA ◽  
Yoshikazu SANO

Sign in / Sign up

Export Citation Format

Share Document